import argparse import time from PIL import Image import torch from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer from transformers import StoppingCriteria, StoppingCriteriaList import dataclasses from enum import auto, Enum from typing import List, Tuple, Any class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() THREE = auto() @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int # system_img: List[Image.Image] = [] sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None skip_next: bool = False conv_id: Any = None def get_prompt(self): if self.sep_style == SeparatorStyle.SINGLE: ret = self.system + self.sep for role, message in self.messages: if message: ret += role + ": " + message + self.sep else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.TWO: seps = [self.sep, self.sep2] ret = self.system + seps[0] for i, (role, message) in enumerate(self.messages): if message: ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.THREE: ret = self.system for i, (role, message) in enumerate(self.messages): if message: if type(message) == list: message = message[0] ret += role + ": " + message else: ret += role + ":" return ret else: raise ValueError(f"Invalid style: {self.sep_style}") def append_message(self, role, message): self.messages.append([role, message]) def to_gradio_chatbot(self): print('to_gradio_chatbot') print(self.messages) ret = [] for i, (role, msg) in enumerate(self.messages[self.offset:]): if i % 2 == 0: ret.append([msg, None]) else: ret[-1][-1] = msg return ret def copy(self): return Conversation( system=self.system, # system_img=self.system_img, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, conv_id=self.conv_id) def dict(self): return { "system": self.system, # "system_img": self.system_img, "roles": self.roles, "messages": self.messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, "conv_id": self.conv_id, } class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False CONV_VISION = Conversation( system="A chat between human who asks question and you give helpful, detailed, and insightful answers to his question.", roles=(" Question", " Answer"), messages=[], offset=2, sep_style=SeparatorStyle.THREE, sep="###", ) CONV_DIRECT= Conversation( system="", roles=("", ""), messages=[], offset=2, sep_style=SeparatorStyle.THREE, sep="###", ) class Chat: def __init__(self, model, vis_processor, device='cuda:0'): self.device = device self.model = model self.vis_processor = vis_processor def ask(self, text, conv): #conv.messages = [] #hack not keeping history. conv.append_message(conv.roles[0], text) def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000): conv.append_message(conv.roles[1], None) question = conv.get_prompt() image = img_list[0] #torch.stack(img_list).to(self.device) output_text = self.model.generate({"image": image, "prompt": question}, num_beams=num_beams, temperature=temperature) conv.messages[-1][1] = output_text return output_text, '' def upload_img(self, image, conv, img_list): if isinstance(image, str): # is a image path raw_image = Image.open(image).convert('RGB') image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) elif isinstance(image, Image.Image): raw_image = image raw_image = raw_image.convert('RGB') image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) elif isinstance(image, torch.Tensor): if len(image.shape) == 3: image = image.unsqueeze(0) image = image.to(self.device) #image_emb, _ = self.model.encode_img(image) img_list.append(image) #conv.append_message(conv.roles[0], "") msg = "Received." # self.conv.append_message(self.conv.roles[1], msg) return msg