File size: 6,048 Bytes
08e5ef1
7edda8b
2bede7c
4c4c78d
5fd1a0a
7edda8b
 
2bede7c
 
75b770e
08e5ef1
 
1fba392
 
925d15e
 
08e5ef1
2bede7c
925d15e
7686e09
4c4c78d
098f871
7c36326
d9267f6
5696fee
3ad22ce
f4651d4
9781999
d9267f6
75b770e
2124573
f4651d4
2124573
 
 
 
 
 
 
 
 
 
 
 
 
 
d9267f6
3ad22ce
 
 
f4651d4
18ff4e4
5696fee
9781999
b7ccecf
9781999
 
3ad22ce
 
9781999
3ad22ce
4c4c78d
3ad22ce
098f871
 
9781999
 
 
4c4c78d
3ad22ce
9781999
 
4c4c78d
5696fee
 
9781999
b7ccecf
d9267f6
b7ccecf
 
d9267f6
 
 
 
c197d53
9781999
 
5696fee
9781999
 
3ad22ce
 
098f871
 
 
 
 
 
 
 
 
4c4c78d
9781999
3ad22ce
 
5696fee
9781999
4c4c78d
9781999
 
5696fee
9781999
 
 
 
 
5696fee
9781999
 
00dc59f
 
 
2bede7c
00dc59f
098f871
ec000c3
3ad22ce
4c4c78d
3ad22ce
 
 
 
 
4c4c78d
098f871
3ad22ce
098f871
 
4c4c78d
 
 
 
3ad22ce
4c4c78d
3ad22ce
 
 
 
 
 
 
 
4c4c78d
 
 
3ad22ce
 
 
 
 
098f871
 
c360795
3ad22ce
2bede7c
925d15e
098f871
925d15e
 
b31944c
925d15e
 
2bede7c
c360795
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard

from gradio_huggingfacehub_search import HuggingfaceHubSearch

from apscheduler.schedulers.background import BackgroundScheduler

from textwrap import dedent

HF_TOKEN = os.environ.get("HF_TOKEN")


def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken | None):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use GGUF-my-repo")
    model_name = model_id.split('/')[-1]
    fp16 = f"{model_name}.fp16.gguf"

    try:
        api = HfApi(token=oauth_token.token)

        dl_pattern = ["*.md", "*.json", "*.model"]

        pattern = (
            "*.safetensors"
            if any(
                file.path.endswith(".safetensors")
                for file in api.list_repo_tree(
                    repo_id=model_id,
                    recursive=True,
                )
            )
            else "*.bin"
        )

        dl_pattern += pattern

        api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
        print("Model downloaded successfully!")
        print(f"Current working directory: {os.getcwd()}")
        print(f"Model directory contents: {os.listdir(model_name)}")

        conversion_script = "convert_hf_to_gguf.py"
        fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
        result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
        print(result)
        if result.returncode != 0:
            raise Exception(f"Error converting to fp16: {result.stderr}")
        print("Model converted to fp16 successfully!")
        print(f"Converted model path: {fp16}")

        username = whoami(oauth_token.token)["name"]
        quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
        quantized_gguf_path = quantized_gguf_name

        quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
        result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error quantizing: {result.stderr}")
        print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
        print(f"Quantized model path: {quantized_gguf_path}")

        # Create empty repo
        new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
        new_repo_id = new_repo_url.repo_id
        print("Repo created successfully!", new_repo_url)

        try:
            card = ModelCard.load(model_id, token=oauth_token.token)
        except:
            card = ModelCard("")
        if card.data.tags is None:
            card.data.tags = []
        card.data.tags.append("llama-cpp")
        card.data.tags.append("gguf-my-repo")
        card.data.base_model = model_id
        card.text = dedent(
            f"""
            # {new_repo_id}
            """
        )
        card.save(f"README.md")

        try:
            print(f"Uploading quantized model: {quantized_gguf_path}")
            api.upload_file(
                path_or_fileobj=quantized_gguf_path,
                path_in_repo=quantized_gguf_name,
                repo_id=new_repo_id,
            )
        except Exception as e:
            raise Exception(f"Error uploading quantized model: {e}")
        
        api.upload_file(
            path_or_fileobj=f"README.md",
            path_in_repo=f"README.md",
            repo_id=new_repo_id,
        )
        print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")

        return (
            f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
            "llama.png",
        )
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree(model_name, ignore_errors=True)
        print("Folder cleaned up successfully!")

css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo: 
    gr.Markdown("You must be logged in to use MLX-my-repo.")
    gr.LoginButton(min_width=250)

    model_id = HuggingfaceHubSearch(
        label="Hub Model ID",
        placeholder="Search for model id on Huggingface",
        search_type="model",
    )

    q_method = gr.Dropdown(
        ["Q4", "Q8"],
        label="Quantization Method",
        info="MLX quantization type",
        value="Q4",
        filterable=False,
        visible=True
    )


    private_repo = gr.Checkbox(
        value=False,
        label="Private Repo",
        info="Create a private repo under your username."
    )

    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
            private_repo,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own MLX Quants, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.",
        api_name=False
    )

def restart_space():
    HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)