Spaces:
Runtime error
Runtime error
File size: 10,994 Bytes
bd27f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import numpy as np
import torch
import os
import copy
from PIL import Image
import json
import imageio
# import clip
SCANNET_COLOR_MAP_20 = {-1: (0., 0., 0.), 0: (174., 199., 232.), 1: (152., 223., 138.), 2: (31., 119., 180.), 3: (255., 187., 120.), 4: (188., 189., 34.), 5: (140., 86., 75.),
6: (255., 152., 150.), 7: (214., 39., 40.), 8: (197., 176., 213.), 9: (148., 103., 189.), 10: (196., 156., 148.), 11: (23., 190., 207.), 12: (247., 182., 210.),
13: (219., 219., 141.), 14: (255., 127., 14.), 15: (158., 218., 229.), 16: (44., 160., 44.), 17: (112., 128., 144.), 18: (227., 119., 194.), 19: (82., 84., 163.)}
class Voxelize(object):
def __init__(self,
voxel_size=0.05,
hash_type="fnv",
mode='train',
keys=("coord", "normal", "color", "label"),
return_discrete_coord=False,
return_min_coord=False):
self.voxel_size = voxel_size
self.hash = self.fnv_hash_vec if hash_type == "fnv" else self.ravel_hash_vec
assert mode in ["train", "test"]
self.mode = mode
self.keys = keys
self.return_discrete_coord = return_discrete_coord
self.return_min_coord = return_min_coord
def __call__(self, data_dict):
assert "coord" in data_dict.keys()
discrete_coord = np.floor(data_dict["coord"] / np.array(self.voxel_size)).astype(np.int)
min_coord = discrete_coord.min(0) * np.array(self.voxel_size)
discrete_coord -= discrete_coord.min(0)
key = self.hash(discrete_coord)
idx_sort = np.argsort(key)
key_sort = key[idx_sort]
_, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True)
if self.mode == 'train': # train mode
# idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + np.random.randint(0, count.max(), count.size) % count
idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1])
idx_unique = idx_sort[idx_select]
if self.return_discrete_coord:
data_dict["discrete_coord"] = discrete_coord[idx_unique]
if self.return_min_coord:
data_dict["min_coord"] = min_coord.reshape([1, 3])
for key in self.keys:
data_dict[key] = data_dict[key][idx_unique]
return data_dict
elif self.mode == 'test': # test mode
data_part_list = []
for i in range(count.max()):
idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + i % count
idx_part = idx_sort[idx_select]
data_part = dict(index=idx_part)
for key in data_dict.keys():
if key in self.keys:
data_part[key] = data_dict[key][idx_part]
else:
data_part[key] = data_dict[key]
if self.return_discrete_coord:
data_part["discrete_coord"] = discrete_coord[idx_part]
if self.return_min_coord:
data_part["min_coord"] = min_coord.reshape([1, 3])
data_part_list.append(data_part)
return data_part_list
else:
raise NotImplementedError
@staticmethod
def ravel_hash_vec(arr):
"""
Ravel the coordinates after subtracting the min coordinates.
"""
assert arr.ndim == 2
arr = arr.copy()
arr -= arr.min(0)
arr = arr.astype(np.uint64, copy=False)
arr_max = arr.max(0).astype(np.uint64) + 1
keys = np.zeros(arr.shape[0], dtype=np.uint64)
# Fortran style indexing
for j in range(arr.shape[1] - 1):
keys += arr[:, j]
keys *= arr_max[j + 1]
keys += arr[:, -1]
return keys
@staticmethod
def fnv_hash_vec(arr):
"""
FNV64-1A
"""
assert arr.ndim == 2
# Floor first for negative coordinates
arr = arr.copy()
arr = arr.astype(np.uint64, copy=False)
hashed_arr = np.uint64(14695981039346656037) * np.ones(arr.shape[0], dtype=np.uint64)
for j in range(arr.shape[1]):
hashed_arr *= np.uint64(1099511628211)
hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j])
return hashed_arr
def overlap_percentage(mask1, mask2):
intersection = np.logical_and(mask1, mask2)
area_intersection = np.sum(intersection)
area_mask1 = np.sum(mask1)
area_mask2 = np.sum(mask2)
smaller_area = min(area_mask1, area_mask2)
return area_intersection / smaller_area
def remove_samll_masks(masks, ratio=0.8):
filtered_masks = []
skip_masks = set()
for i, mask1_dict in enumerate(masks):
if i in skip_masks:
continue
should_keep = True
for j, mask2_dict in enumerate(masks):
if i == j or j in skip_masks:
continue
mask1 = mask1_dict["segmentation"]
mask2 = mask2_dict["segmentation"]
overlap = overlap_percentage(mask1, mask2)
if overlap > ratio:
if np.sum(mask1) < np.sum(mask2):
should_keep = False
break
else:
skip_masks.add(j)
if should_keep:
filtered_masks.append(mask1)
return filtered_masks
def to_numpy(x):
if isinstance(x, torch.Tensor):
x = x.clone().detach().cpu().numpy()
assert isinstance(x, np.ndarray)
return x
def save_point_cloud(coord, color=None, file_path="pc.ply", logger=None):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
coord = to_numpy(coord)
if color is not None:
color = to_numpy(color)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(coord)
pcd.colors = o3d.utility.Vector3dVector(np.ones_like(coord) if color is None else color)
o3d.io.write_point_cloud(file_path, pcd)
if logger is not None:
logger.info(f"Save Point Cloud to: {file_path}")
def remove_small_group(group_ids, th):
unique_elements, counts = np.unique(group_ids, return_counts=True)
result = group_ids.copy()
for i, count in enumerate(counts):
if count < th:
result[group_ids == unique_elements[i]] = -1
return result
def pairwise_indices(length):
return [[i, i + 1] if i + 1 < length else [i] for i in range(0, length, 2)]
def num_to_natural(group_ids):
'''
Change the group number to natural number arrangement
'''
if np.all(group_ids == -1):
return group_ids
array = copy.deepcopy(group_ids)
unique_values = np.unique(array[array != -1])
mapping = np.full(np.max(unique_values) + 2, -1)
mapping[unique_values + 1] = np.arange(len(unique_values))
array = mapping[array + 1]
return array
def get_matching_indices(source, pcd_tree, search_voxel_size, K=None):
match_inds = []
for i, point in enumerate(source.points):
[_, idx, _] = pcd_tree.search_radius_vector_3d(point, search_voxel_size)
if K is not None:
idx = idx[:K]
for j in idx:
# match_inds[i, j] = 1
match_inds.append((i, j))
return match_inds
def visualize_3d(data_dict, text_feat_path, save_path):
text_feat = torch.load(text_feat_path)
group_logits = np.einsum('nc,mc->nm', data_dict["group_feat"], text_feat)
group_labels = np.argmax(group_logits, axis=-1)
labels = group_labels[data_dict["group"]]
labels[data_dict["group"] == -1] = -1
visualize_pcd(data_dict["coord"], data_dict["color"], labels, save_path)
def visualize_pcd(coord, pcd_color, labels, save_path):
# alpha = 0.5
label_color = np.array([SCANNET_COLOR_MAP_20[label] for label in labels])
# overlay = (pcd_color * (1-alpha) + label_color * alpha).astype(np.uint8) / 255
label_color = label_color / 255
save_point_cloud(coord, label_color, save_path)
def visualize_2d(img_color, labels, img_size, save_path):
import matplotlib.pyplot as plt
# from skimage.segmentation import mark_boundaries
# from skimage.color import label2rgb
label_names = ["wall", "floor", "cabinet", "bed", "chair",
"sofa", "table", "door", "window", "bookshelf",
"picture", "counter", "desk", "curtain", "refridgerator",
"shower curtain", "toilet", "sink", "bathtub", "other"]
colors = np.array(list(SCANNET_COLOR_MAP_20.values()))[1:]
segmentation_color = np.zeros((img_size[0], img_size[1], 3))
for i, color in enumerate(colors):
segmentation_color[labels == i] = color
alpha = 1
overlay = (img_color * (1-alpha) + segmentation_color * alpha).astype(np.uint8)
fig, ax = plt.subplots()
ax.imshow(overlay)
patches = [plt.plot([], [], 's', color=np.array(color)/255, label=label)[0] for label, color in zip(label_names, colors)]
plt.legend(handles=patches, bbox_to_anchor=(0.5, -0.1), loc='upper center', ncol=4, fontsize='small')
plt.savefig(save_path, bbox_inches='tight')
plt.show()
def visualize_partition(coord, group_id, save_path):
group_id = group_id.reshape(-1)
num_groups = group_id.max() + 1
group_colors = np.random.rand(num_groups, 3)
group_colors = np.vstack((group_colors, np.array([0,0,0])))
color = group_colors[group_id]
save_point_cloud(coord, color, save_path)
def delete_invalid_group(group, group_feat):
indices = np.unique(group[group != -1])
group = num_to_natural(group)
group_feat = group_feat[indices]
return group, group_feat
def group_sem_voting(semantic_label, seg_result, instance_num=0):
if instance_num == 0:
instance_num = seg_result.max() + 1
seg_labels = []
sem_map = -1 * torch.ones_like(semantic_label)
for n in range(instance_num):
mask = (seg_result == n)
if mask.sum() == 0:
sem_map[mask] = -1
seg_labels.append(-1)
continue
seg_label_n_cover, seg_label_n_nums = torch.unique(semantic_label[mask], return_counts=True)
seg_label_n = seg_label_n_cover[seg_label_n_nums.max(-1)[1]]
seg_labels.append(seg_label_n)
sem_map[mask] = seg_label_n
return sem_map
def two_image_to_gif(image_1, image_2, name):
num_begin = 30
num_frames = 30
num_end = 30
frames = []
for i in range(num_begin):
frames.append(image_1)
for i in range(num_frames):
image_tmp = image_1 + (image_2 - image_1) * (i / (num_frames - 1))
frames.append(image_tmp.astype(np.uint8))
for i in range(num_end):
frames.append(image_2)
# video_out_file = '{}.gif'.format(name)
# imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25)
video_out_file = '{}.mp4'.format(name)
imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25, quality=8) |