Spaces:
Runtime error
Runtime error
# pre-process ScanNet 2D data | |
# note: depends on the sens file reader from ScanNet: | |
# https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py | |
# if export_label_images flag is on: | |
# - depends on https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py | |
# - also assumes that label images are unzipped as scene*/label*/*.png | |
# expected file structure: | |
# - prepare_2d_data.py | |
# - https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py | |
# - https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py | |
# | |
# example usage: | |
# python prepare_2d_data.py --scannet_path data/scannetv2 --output_path data/scannetv2_images --export_label_images | |
import argparse | |
import os, sys | |
import numpy as np | |
import skimage.transform as sktf | |
import imageio | |
from SensorData import SensorData | |
import util | |
# try: | |
# from prepare_2d_data.SensorData import SensorData | |
# except: | |
# print('Failed to import SensorData (from ScanNet code toolbox)') | |
# sys.exit(-1) | |
# try: | |
# from prepare_2d_data import util | |
# except: | |
# print('Failed to import ScanNet code toolbox util') | |
# sys.exit(-1) | |
# params | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--scannet_path', required=True, help='path to scannet data') | |
parser.add_argument('--output_path', required=True, help='where to output 2d data') | |
parser.add_argument('--export_label_images', dest='export_label_images', action='store_true') | |
parser.add_argument('--label_type', default='label-filt', help='which labels (label or label-filt)') | |
parser.add_argument('--frame_skip', type=int, default=20, help='export every nth frame') | |
parser.add_argument('--label_map_file', default='scannet-preprocess/meta_data/scannetv2-labels.combined.tsv', | |
help='path to scannetv2-labels.combined.tsv (required for label export only)') | |
parser.add_argument('--output_image_width', type=int, default=640, help='export image width') | |
parser.add_argument('--output_image_height', type=int, default=480, help='export image height') | |
parser.set_defaults(export_label_images=False) | |
opt = parser.parse_args() | |
if opt.export_label_images: | |
assert opt.label_map_file != '' | |
print(opt) | |
def print_error(message): | |
sys.stderr.write('ERROR: ' + str(message) + '\n') | |
sys.exit(-1) | |
# from https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/2d_helpers/convert_scannet_label_image.py | |
def map_label_image(image, label_mapping): | |
mapped = np.copy(image) | |
for k, v in label_mapping.iteritems(): | |
mapped[image == k] = v | |
return mapped.astype(np.uint8) | |
def main(): | |
if not os.path.exists(opt.output_path): | |
os.makedirs(opt.output_path) | |
label_mapping = None | |
if opt.export_label_images: | |
label_map = util.read_label_mapping(opt.label_map_file, label_from='id', label_to='nyu40id') | |
scenes = [d for d in os.listdir(opt.scannet_path) if os.path.isdir(os.path.join(opt.scannet_path, d))] | |
print('Found %d scenes' % len(scenes)) | |
for i in range(0,len(scenes)): | |
if scenes[i] != 'scene0000_00': continue | |
sens_file = os.path.join(opt.scannet_path, scenes[i], scenes[i] + '.sens') | |
label_path = os.path.join(opt.scannet_path, scenes[i], opt.label_type) | |
if opt.export_label_images and not os.path.isdir(label_path): | |
print_error('Error: using export_label_images option but label path %s does not exist' % label_path) | |
output_color_path = os.path.join(opt.output_path, scenes[i], 'color') | |
if not os.path.isdir(output_color_path): | |
os.makedirs(output_color_path) | |
output_depth_path = os.path.join(opt.output_path, scenes[i], 'depth') | |
if not os.path.isdir(output_depth_path): | |
os.makedirs(output_depth_path) | |
output_pose_path = os.path.join(opt.output_path, scenes[i], 'pose') | |
if not os.path.isdir(output_pose_path): | |
os.makedirs(output_pose_path) | |
output_label_path = os.path.join(opt.output_path, scenes[i], 'label') | |
if opt.export_label_images and not os.path.isdir(output_label_path): | |
os.makedirs(output_label_path) | |
output_intrinsics_path = os.path.join(opt.output_path, scenes[i], 'intrinsics') | |
if opt.export_label_images and not os.path.isdir(output_label_path): | |
os.makedirs(output_label_path) | |
# read and export | |
sys.stdout.write('\r[ %d | %d ] %s\tloading...' % ((i + 1), len(scenes), scenes[i])) | |
sys.stdout.flush() | |
sd = SensorData(sens_file) | |
sys.stdout.write('\r[ %d | %d ] %s\texporting...' % ((i + 1), len(scenes), scenes[i])) | |
sys.stdout.flush() | |
sd.export_color_images(output_color_path, image_size=[opt.output_image_height, opt.output_image_width], | |
frame_skip=opt.frame_skip) | |
sd.export_depth_images(output_depth_path, image_size=[opt.output_image_height, opt.output_image_width], | |
frame_skip=opt.frame_skip) | |
sd.export_poses(output_pose_path, frame_skip=opt.frame_skip) | |
sd.export_intrinsics(output_intrinsics_path) | |
if opt.export_label_images: | |
for f in range(0, len(sd.frames), opt.frame_skip): | |
label_file = os.path.join(label_path, str(f) + '.png') | |
image = np.array(imageio.imread(label_file)) | |
image = sktf.resize(image, [opt.output_image_height, opt.output_image_width], order=0, | |
preserve_range=True) | |
mapped_image = map_label_image(image, label_map) | |
imageio.imwrite(os.path.join(output_label_path, str(f) + '.png'), mapped_image) | |
print('') | |
if __name__ == '__main__': | |
main() | |