Upload app.py.py
Browse files
app.py.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.llms import Ollama
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from langchain.chains import LLMChain
|
7 |
+
from textblob import TextBlob
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
def load_model():
|
13 |
+
model = Ollama(model='llama3.1:latest', temperature=0.2)
|
14 |
+
return model
|
15 |
+
|
16 |
+
def summarize_prompt():
|
17 |
+
return PromptTemplate(
|
18 |
+
input_variables=["email"],
|
19 |
+
template=(
|
20 |
+
"""
|
21 |
+
1. Berdasarkan teks berikut, buat ringkasan singkat tentang tindakan utama yang dilakukan oleh user, ambil no resi pada text dalam format berikut:
|
22 |
+
[Aksi User]
|
23 |
+
|
24 |
+
2. Berikan juga analisis sentimen percakapan user dengan salah satu label:
|
25 |
+
- Positif
|
26 |
+
- Negatif
|
27 |
+
- Netral
|
28 |
+
|
29 |
+
Teks:
|
30 |
+
{email}
|
31 |
+
|
32 |
+
Ringkasan:
|
33 |
+
Aksi User: [Deskripsikan tindakan utama user berdasarkan teks]
|
34 |
+
Sentimen: [Tentukan sentimen berdasarkan nada dan konteks teks]
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
)
|
38 |
+
|
39 |
+
def simple_sentiment_analysis(text):
|
40 |
+
blob = TextBlob(text)
|
41 |
+
sentiment = blob.sentiment.polarity
|
42 |
+
if sentiment > 0:
|
43 |
+
return "Positif"
|
44 |
+
elif sentiment < 0:
|
45 |
+
return "Negatif"
|
46 |
+
else:
|
47 |
+
return "Netral"
|
48 |
+
|
49 |
+
model = load_model()
|
50 |
+
prompt = summarize_prompt()
|
51 |
+
llm_chain = LLMChain(llm=model, prompt=prompt)
|
52 |
+
|
53 |
+
def analyze_email(email):
|
54 |
+
result = llm_chain.run(email=email)
|
55 |
+
sentiment = simple_sentiment_analysis(email)
|
56 |
+
return result + f"\nSentimen Percakapan: {sentiment}"
|
57 |
+
|
58 |
+
# Streamlit UI
|
59 |
+
st.title("Sentiment Analysis and User Action Summarizer")
|
60 |
+
st.write("Enter an email or text below to analyze the user's action and sentiment:")
|
61 |
+
|
62 |
+
user_input = st.text_area("Email/Text Input", "", height=200)
|
63 |
+
|
64 |
+
if st.button("Analyze"):
|
65 |
+
if user_input:
|
66 |
+
analysis_result = analyze_email(user_input)
|
67 |
+
st.subheader("Analysis Result:")
|
68 |
+
st.text(analysis_result)
|
69 |
+
else:
|
70 |
+
st.warning("Please enter some text to analyze.")
|