Upload 12 files
Browse files- .gitattributes +1 -0
- app.py +10 -0
- eda.py +135 -0
- model_gru_2/assets/tokens.txt +0 -0
- model_gru_2/fingerprint.pb +3 -0
- model_gru_2/keras_metadata.pb +3 -0
- model_gru_2/saved_model.pb +3 -0
- model_gru_2/variables/variables.data-00000-of-00001 +3 -0
- model_gru_2/variables/variables.index +0 -0
- prediction.py +44 -0
- requirements.txt +8 -0
- tweets-update.csv +0 -0
- twittersentiment.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model_gru_2/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
page = st.sidebar.selectbox('Pilih Halaman : ', ('Dashboard', 'Prediction'))
|
6 |
+
|
7 |
+
if page == 'Dashboard' :
|
8 |
+
eda.run()
|
9 |
+
else:
|
10 |
+
prediction.run()
|
eda.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
def run():
|
9 |
+
#Membuat title
|
10 |
+
st.title('Text-Based Twitter Sentiment Analysis')
|
11 |
+
|
12 |
+
#Tambahkan gambar
|
13 |
+
image = Image.open('twittersentiment.jpg')
|
14 |
+
st.image(image, caption = 'Twitter Sentiment')
|
15 |
+
|
16 |
+
#Membuat garis
|
17 |
+
st.markdown('----')
|
18 |
+
|
19 |
+
#Masukkan pandas dataframe
|
20 |
+
|
21 |
+
#Show dataframe
|
22 |
+
df = pd.read_csv('tweets-update.csv')
|
23 |
+
st.dataframe(df)
|
24 |
+
st.write('Source : https://www.kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset')
|
25 |
+
|
26 |
+
st.markdown('----')
|
27 |
+
st.title('Exploratory Data Analysis')
|
28 |
+
#Bar Plot
|
29 |
+
st.write('#### Distribution of Sentiments')
|
30 |
+
fig_sentiments = plt.figure(figsize=(10, 6))
|
31 |
+
sns.countplot(x='sentiment', data=df)
|
32 |
+
plt.xlabel('Sentiment Label')
|
33 |
+
plt.ylabel('Count')
|
34 |
+
plt.title('Distribution of Sentiments')
|
35 |
+
st.pyplot(fig_sentiments)
|
36 |
+
|
37 |
+
# Positive Sentiment Tweets Bar
|
38 |
+
st.write('#### Distribution of Text Length for Positive Sentiment Tweets')
|
39 |
+
fig_length_positive = plt.figure(figsize=(14, 7))
|
40 |
+
|
41 |
+
# Handle NaN values in 'text_processed'
|
42 |
+
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
|
43 |
+
|
44 |
+
ax1 = fig_length_positive.add_subplot(122)
|
45 |
+
sns.histplot(df[df['sentiment']=='positive']['length'], ax=ax1, color='green')
|
46 |
+
describe_positive = df.length[df.sentiment=='positive'].describe().to_frame().round(2)
|
47 |
+
|
48 |
+
ax2 = fig_length_positive.add_subplot(121)
|
49 |
+
ax2.axis('off')
|
50 |
+
font_size = 14
|
51 |
+
bbox = [0, 0, 1, 1]
|
52 |
+
table_positive = ax2.table(cellText=describe_positive.values, rowLabels=describe_positive.index, bbox=bbox, colLabels=describe_positive.columns)
|
53 |
+
table_positive.set_fontsize(font_size)
|
54 |
+
fig_length_positive.suptitle('Distribution of text length for positive sentiment tweets.', fontsize=16)
|
55 |
+
|
56 |
+
st.pyplot(fig_length_positive)
|
57 |
+
|
58 |
+
# negative Sentiment Tweets Bar
|
59 |
+
st.write('#### Distribution of Text Length for negative Sentiment Tweets')
|
60 |
+
fig_length_negative = plt.figure(figsize=(14, 7))
|
61 |
+
|
62 |
+
# Handle NaN values in 'text_processed'
|
63 |
+
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
|
64 |
+
|
65 |
+
ax1 = fig_length_negative.add_subplot(122)
|
66 |
+
sns.histplot(df[df['sentiment']=='negative']['length'], ax=ax1, color='red')
|
67 |
+
describe_negative = df.length[df.sentiment=='negative'].describe().to_frame().round(2)
|
68 |
+
|
69 |
+
ax2 = fig_length_negative.add_subplot(121)
|
70 |
+
ax2.axis('off')
|
71 |
+
font_size = 14
|
72 |
+
bbox = [0, 0, 1, 1]
|
73 |
+
table_negative = ax2.table(cellText=describe_negative.values, rowLabels=describe_negative.index, bbox=bbox, colLabels=describe_negative.columns)
|
74 |
+
table_negative.set_fontsize(font_size)
|
75 |
+
fig_length_negative.suptitle('Distribution of text length for negative sentiment tweets.', fontsize=16)
|
76 |
+
|
77 |
+
st.pyplot(fig_length_negative)
|
78 |
+
|
79 |
+
# neutral Sentiment Tweets Bar
|
80 |
+
st.write('#### Distribution of Text Length for neutral Sentiment Tweets')
|
81 |
+
fig_length_neutral = plt.figure(figsize=(14, 7))
|
82 |
+
|
83 |
+
# Handle NaN values in 'text_processed'
|
84 |
+
df['length'] = df['text_processed'].apply(lambda x: len(str(x).split()) if pd.notna(x) else 0)
|
85 |
+
|
86 |
+
ax1 = fig_length_neutral.add_subplot(122)
|
87 |
+
sns.histplot(df[df['sentiment']=='neutral']['length'], ax=ax1, color='blue')
|
88 |
+
describe_neutral = df.length[df.sentiment=='neutral'].describe().to_frame().round(2)
|
89 |
+
|
90 |
+
ax2 = fig_length_neutral.add_subplot(121)
|
91 |
+
ax2.axis('off')
|
92 |
+
font_size = 14
|
93 |
+
bbox = [0, 0, 1, 1]
|
94 |
+
table_neutral = ax2.table(cellText=describe_neutral.values, rowLabels=describe_neutral.index, bbox=bbox, colLabels=describe_neutral.columns)
|
95 |
+
table_neutral.set_fontsize(font_size)
|
96 |
+
fig_length_neutral.suptitle('Distribution of text length for neutral sentiment tweets.', fontsize=16)
|
97 |
+
|
98 |
+
st.pyplot(fig_length_neutral)
|
99 |
+
|
100 |
+
# Membuat pie chart
|
101 |
+
st.write('#### Pie Chart - Sentiment Distribution')
|
102 |
+
labels = ['Neutral', 'Positive', 'Negative']
|
103 |
+
size = df['sentiment'].value_counts()
|
104 |
+
colors = ['lightgreen', 'lightskyblue', 'lightcoral']
|
105 |
+
explode = [0.01, 0.01, 0.1]
|
106 |
+
|
107 |
+
fig, axes = plt.subplots(figsize=(6, 5))
|
108 |
+
plt.pie(size, colors=colors, explode=explode,
|
109 |
+
labels=labels, shadow=True, startangle=90, autopct='%.2f%%')
|
110 |
+
plt.title('Sentiment Distribution', fontsize=20)
|
111 |
+
plt.legend()
|
112 |
+
|
113 |
+
st.pyplot(fig)
|
114 |
+
# #Membuat histogram
|
115 |
+
# st.write('#### Histogram of Age')
|
116 |
+
# fig = plt.figure(figsize=(15,5))
|
117 |
+
# sns.histplot(df['Overall'], bins = 30, kde = True)
|
118 |
+
# st.pyplot(fig)
|
119 |
+
|
120 |
+
# #membuat histogram berdasarkan inputan user
|
121 |
+
# st.write('#### Histogram berdasarkan input user')
|
122 |
+
# #kalo mau pake radio button, ganti selectbox jadi radio
|
123 |
+
# option = st.selectbox('Pilih Column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
|
124 |
+
# fig = plt.figure(figsize= (15,5))
|
125 |
+
# sns.histplot(df[option], bins = 30, kde = True)
|
126 |
+
# st.pyplot(fig)
|
127 |
+
|
128 |
+
# #Membuat Plotly plot
|
129 |
+
|
130 |
+
# st.write('#### Plotly Plot - ValueEUR vs Overall')
|
131 |
+
# fig = px.scatter(df, x = 'ValueEUR', y = 'Overall', hover_data = ['Name', 'Age'])
|
132 |
+
# st.plotly_chart(fig)
|
133 |
+
|
134 |
+
if __name__ == '__main__':
|
135 |
+
run()
|
model_gru_2/assets/tokens.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_gru_2/fingerprint.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:389fc4a0ba65798fd60fae3ddb562d50ee7ff0de8c3640a8afecc76f1a69bd39
|
3 |
+
size 55
|
model_gru_2/keras_metadata.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c87c818d04c895d135b4cce0cfc2f03ad071938411898c7986fbcf95e1c591
|
3 |
+
size 26812
|
model_gru_2/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edddd288d1bba93e83dd2b36b46b39f7a48f9713ffbc8b8a8c8b511240ecf4fc
|
3 |
+
size 3542856
|
model_gru_2/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e27d92803de5105255153e03a804dd7aafbc1573ae96f938a8ac59161c12f5a
|
3 |
+
size 498765088
|
model_gru_2/variables/variables.index
ADDED
Binary file (3.07 kB). View file
|
|
prediction.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from keras.models import load_model
|
4 |
+
from PIL import Image
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
|
7 |
+
# Load the GRU model
|
8 |
+
model = load_model('model_gru_2')
|
9 |
+
|
10 |
+
def run():
|
11 |
+
|
12 |
+
image = Image.open('twittersentiment.jpg')
|
13 |
+
st.image(image, caption = 'Twitter Sentiment')
|
14 |
+
|
15 |
+
with st.form('sentiment_prediction'):
|
16 |
+
# Field Input Text
|
17 |
+
input_text = st.text_area('Input Text', '', help='Enter the text for sentiment prediction')
|
18 |
+
|
19 |
+
# Create a submit button
|
20 |
+
submitted = st.form_submit_button('Predict')
|
21 |
+
|
22 |
+
# Inference
|
23 |
+
if submitted:
|
24 |
+
# Make a prediction using the model
|
25 |
+
# Convert the input text to lowercase (optional)
|
26 |
+
input_text = input_text.lower()
|
27 |
+
|
28 |
+
# Make a prediction using the model
|
29 |
+
predictions = model.predict(np.array([input_text]))
|
30 |
+
|
31 |
+
# Map predicted class to labels
|
32 |
+
predicted_class = np.argmax(predictions[0])
|
33 |
+
class_labels = {0: 'Negative', 1: 'Positive', 2: 'Neutral'}
|
34 |
+
predicted_label = class_labels[predicted_class]
|
35 |
+
|
36 |
+
# Display the results
|
37 |
+
st.write('## Sentiment Prediction:')
|
38 |
+
st.write('Input Text:', input_text)
|
39 |
+
st.write('Predicted Class:', predicted_class)
|
40 |
+
st.write('Predicted Label:', predicted_label)
|
41 |
+
st.write('Prediction Probabilities:', predictions[0])
|
42 |
+
|
43 |
+
if __name__ == '__main__':
|
44 |
+
run()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
seaborn
|
4 |
+
matplotlib
|
5 |
+
numpy
|
6 |
+
plotly
|
7 |
+
pillow
|
8 |
+
scikit-learn==1.3.2
|
tweets-update.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
twittersentiment.jpg
ADDED