Spaces:
Sleeping
Sleeping
File size: 4,105 Bytes
7dbb743 2c7a30f 7dbb743 f8828b6 dd5526c a33168c 7dbb743 f8828b6 dd5526c a33168c dd5526c a33168c dd5526c a33168c f8828b6 7dbb743 7438d14 7dbb743 7438d14 7dbb743 592abf1 f8828b6 7438d14 a488f1e f8828b6 7438d14 f8828b6 7438d14 f8828b6 7438d14 f8828b6 7438d14 7dbb743 7438d14 7dbb743 f8828b6 7dbb743 f8828b6 a9f65b9 f8828b6 7dbb743 7438d14 7dbb743 f8828b6 7dbb743 dd5526c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from flask import Flask, render_template, request, redirect, url_for
from joblib import load
import pandas as pd
import re
from customFunctions import *
import json
import datetime
import numpy as np
from huggingface_hub import hf_hub_download
import torch
import os
pd.set_option('display.max_colwidth', 1000)
# Patch torch.load to always load on CPU
original_torch_load = torch.load
def cpu_load(*args, **kwargs):
return original_torch_load(*args, map_location=torch.device('cpu'), **kwargs)
torch.load = cpu_load
def load_pipeline_from_hub(filename):
cache_dir = "/tmp/hf_cache"
os.environ["HF_HUB_CACHE"] = cache_dir # optional but informative
repo_id = 'hw01558/nlp-coursework-pipelines'
local_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
return load(local_path)
#repo_id = 'hw01558/nlp-coursework-pipelines'
#local_path = hf_hub_download(repo_id=repo_id, filename=filename)
#return load(local_path)
PIPELINES = [
{
'id': 1,
'name': 'Baseline',
'filename': "pipeline_ex1_s1.joblib"
},
{
'id': 2,
'name': 'Trained on a FeedForward NN',
'filename': "pipeline_ex1_s2.joblib"
},
{
'id': 3,
'name': 'Trained on a CRF',
'filename': "pipeline_ex1_s3.joblib"
},
{
'id': 4,
'name': 'Trained on a small dataset',
'filename': "pipeline_ex2_s3.joblib"
},
{
'id': 5,
'name': 'Trained on a large dataset',
'filename': "pipeline_ex2_s2.joblib"
},
{
'id': 6,
'name': 'Embedded using TFIDF',
'filename': "pipeline_ex3_s2.joblib"
},
{
'id': 7,
'name': 'Embedded using GloVe',
'filename': "pipeline_ex3_s3.joblib"
},
{
'id': 8,
'name': 'Embedded using Bio2Vec',
'filename': "pipeline_ex3_s4.joblib"
},
]
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
def get_pipeline_by_id(pipelines, pipeline_id):
return next((p['filename'] for p in pipelines if p['id'] == pipeline_id), None)
def get_name_by_id(pipelines, pipeline_id):
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
def requestResults(text, pipeline):
labels = pipeline.predict(text)
if isinstance(labels, np.ndarray):
labels = labels.tolist()
return labels[0]
import os
LOG_FILE = "/tmp/usage_log.jsonl" # Use temporary file path for Hugging Face Spaces
def log_interaction(user_input, model_name, predictions):
log_entry = {
"timestamp": datetime.datetime.utcnow().isoformat(),
"model": model_name,
"user_input": user_input,
"predictions": predictions
}
try:
os.makedirs(os.path.dirname(LOG_FILE), exist_ok=True) # Ensure the directory exists
with open(LOG_FILE, "a") as log_file:
log_file.write(json.dumps(log_entry) + "\n")
except Exception as e:
print(f"Error writing to log: {e}")
# You could also return a response with the error, or raise an error to stop the process
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html', pipelines= pipeline_metadata)
@app.route('/', methods=['POST'])
def get_data():
if request.method == 'POST':
text = request.form['search']
tokens = re.findall(r"\w+|[^\w\s]", text)
tokens_fomatted = pd.Series([pd.Series(tokens)])
pipeline_id = int(request.form['pipeline_select'])
pipeline = load_pipeline_from_hub(get_pipeline_by_id(PIPELINES, pipeline_id))
name = get_name_by_id(PIPELINES, pipeline_id)
labels = requestResults(tokens_fomatted, pipeline)
results = dict(zip(tokens, labels))
log_interaction(text, name, results)
return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)
if __name__ == '__main__':
app.run(host="0.0.0.0", port=7860)
#if __name__ == '__main__':
#app.run(host="0.0.0.0", port=7860)
|