File size: 4,105 Bytes
7dbb743
 
 
 
2c7a30f
7dbb743
 
f8828b6
dd5526c
 
a33168c
7dbb743
 
 
f8828b6
 
 
 
 
 
 
 
dd5526c
a33168c
 
 
dd5526c
a33168c
dd5526c
a33168c
 
 
 
f8828b6
7dbb743
 
 
 
7438d14
7dbb743
 
 
 
7438d14
7dbb743
 
 
 
fe82cb7
f8828b6
 
 
 
7438d14
a488f1e
f8828b6
 
 
7438d14
f8828b6
 
 
 
7438d14
f8828b6
 
 
 
7438d14
f8828b6
 
 
 
7438d14
7dbb743
 
 
 
 
 
 
7438d14
7dbb743
 
 
 
 
 
 
 
f8828b6
 
 
7dbb743
f8828b6
 
 
a9f65b9
f8828b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dbb743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7438d14
7dbb743
 
 
 
 
f8828b6
7dbb743
 
 
 
 
 
 
dd5526c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from flask import Flask, render_template, request, redirect, url_for
from joblib import load
import pandas as pd
import re
from customFunctions import *
import json
import datetime
import numpy as np
from huggingface_hub import hf_hub_download
import torch
import os

pd.set_option('display.max_colwidth', 1000)


# Patch torch.load to always load on CPU
original_torch_load = torch.load
def cpu_load(*args, **kwargs):
    return original_torch_load(*args, map_location=torch.device('cpu'), **kwargs)

torch.load = cpu_load

def load_pipeline_from_hub(filename):
    cache_dir = "/tmp/hf_cache"
    os.environ["HF_HUB_CACHE"] = cache_dir  # optional but informative

    repo_id = 'hw01558/nlp-coursework-pipelines'
    local_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
    return load(local_path)
    
    #repo_id = 'hw01558/nlp-coursework-pipelines'
    #local_path = hf_hub_download(repo_id=repo_id, filename=filename)
    #return load(local_path)

PIPELINES = [
    {
        'id': 1,
        'name': 'Baseline',
        'filename': "pipeline_ex1_s1.joblib"
    },
    {
        'id': 2,
        'name': 'Trained on a FeedForward NN',
        'filename': "pipeline_ex1_s2.joblib"
    },
    {
        'id': 3,
        'name': 'Trained on a CRF',
        'filename': "pipeline_ex1_s3.joblib"
    },
    {
        'id': 4,
        'name': 'Trained on a small dataset',
        'filename': "pipeline_ex2_s3.joblib"
    },
    {
        'id': 5,
        'name': 'Trained on a large dataset',
        'filename': "pipeline_ex2_s2.joblib"
    },
    {
        'id': 6,
        'name': 'Embedded using TFIDF',
        'filename': "pipeline_ex3_s2.joblib"
    },
    {
        'id': 7,
        'name': 'Embedded using GloVe',
        'filename': "pipeline_ex3_s3.joblib"
    },
    {
         'id': 8,
         'name': 'Embedded using Bio2Vec',
        'filename': "pipeline_ex3_s4.joblib"
    },
    
]

pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]

def get_pipeline_by_id(pipelines, pipeline_id):
    return next((p['filename'] for p in pipelines if p['id'] == pipeline_id), None)

def get_name_by_id(pipelines, pipeline_id):
    return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)



def requestResults(text, pipeline):
    labels = pipeline.predict(text)
    if isinstance(labels, np.ndarray):
        labels = labels.tolist()
    return labels[0]

import os

LOG_FILE = "/tmp/usage_log.jsonl"  # Use temporary file path for Hugging Face Spaces

def log_interaction(user_input, model_name, predictions):
    log_entry = {
        "timestamp": datetime.datetime.utcnow().isoformat(),
        "model": model_name,
        "user_input": user_input,
        "predictions": predictions
    }

    try:
        os.makedirs(os.path.dirname(LOG_FILE), exist_ok=True)  # Ensure the directory exists
        with open(LOG_FILE, "a") as log_file:
            log_file.write(json.dumps(log_entry) + "\n")
    except Exception as e:
        print(f"Error writing to log: {e}")
        # You could also return a response with the error, or raise an error to stop the process


app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html', pipelines= pipeline_metadata)


@app.route('/', methods=['POST'])
def get_data():
    if request.method == 'POST':

        text = request.form['search']
        tokens = re.findall(r"\w+|[^\w\s]", text)
        tokens_fomatted = pd.Series([pd.Series(tokens)])

        pipeline_id = int(request.form['pipeline_select'])
        pipeline = load_pipeline_from_hub(get_pipeline_by_id(PIPELINES, pipeline_id))
        name = get_name_by_id(PIPELINES, pipeline_id)
        
        labels = requestResults(tokens_fomatted, pipeline)
        results = dict(zip(tokens, labels))

        log_interaction(text, name, results)

        return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)


if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)

#if __name__ == '__main__':
#app.run(host="0.0.0.0", port=7860)