Spaces:
Runtime error
Runtime error
File size: 25,298 Bytes
173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 637af2f 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf 31e192b 173cecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import cv2
import numpy as np
import argparse
import base64
import io
import os
import re
import sys
import traceback
import uuid
from typing import List, Optional
from PIL import ImageEnhance
import traceback
import cv2
import numpy as np
import pandas as pd
import pinecone
import pyiqa
import timm
import torch
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from PIL import Image
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, util
from transformers import (
AutoFeatureExtractor,
AutoModel,
DonutProcessor,
VisionEncoderDecoderModel,
)
from fashion_clip.fashion_clip import FashionCLIP
load_dotenv()
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
DETECTION_URL = "/object-detection/"
CLASSIFICATION_URL = "/object-classification/"
QUALITY_ASSESSMENT_URL = "/quality-assessment/"
FACE_URL = "/face-anonymization/"
LICENCE_URL = "/licenceplate-anonymization/"
DOCUMENT_QA = "/document-qa/"
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
INDEX_NAME = "imagesearch-demo"
INDEX_DIMENSION = 512
TMP_DIR = "tmp"
def enhance_image(pil_image):
# Convert PIL Image to OpenCV format
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# Convert to grayscale
gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
# Histogram equalization
equ = cv2.equalizeHist(gray)
# Adaptive Histogram Equalization
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
adaptive_hist_eq = clahe.apply(gray)
# Gaussian Blurring
gaussian_blurred = cv2.GaussianBlur(adaptive_hist_eq, (5,5), 0)
# Noise reduction
denoised = cv2.medianBlur(gaussian_blurred, 3)
# Brightness & Contrast adjustment
lab = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2Lab)
l, a, b = cv2.split(lab)
cl = clahe.apply(l)
limg = cv2.merge((cl, a, b))
enhanced_image = cv2.cvtColor(limg, cv2.COLOR_Lab2BGR)
# Convert back to PIL Image
enhanced_pil_image = Image.fromarray(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))
# IMAGE AUGMENTATION
# For demonstration purposes, let's do a simple brightness adjustment.
# In practice, choose the augmentations that suit your task.
enhancer = ImageEnhance.Brightness(enhanced_pil_image)
enhanced_pil_image = enhancer.enhance(1.2) # Brighten the image by 20%
return enhanced_pil_image
if INDEX_NAME not in pinecone.list_indexes():
pinecone.create_index(INDEX_NAME, dimension=512, metric='cosine')
print("Connecting to Pinecone Index")
index = pinecone.Index(INDEX_NAME)
os.makedirs(TMP_DIR, exist_ok=True)
# licence_model = torch.hub.load(
# "ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
# )
# licence_model.cpu()
# detector = cv2.dnn.DetectionModel(
# "res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
# )
# processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
# doc_qa_model = VisionEncoderDecoderModel.from_pretrained(
# "naver-clova-ix/donut-base-finetuned-docvqa"
# )
device = "cuda" if torch.cuda.is_available() else "cpu"
# doc_qa_model.to(device)
os.makedirs(TMP_DIR, exist_ok=True)
# model = torch.hub.load(
# "ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
# )
# model.cpu()
# classes = [
# "gas-distribution-meter",
# "gas-distribution-piping",
# "gas-distribution-regulator",
# "gas-distribution-valve",
# ]
# class_to_idx = {
# "gas-distribution-meter": 0,
# "gas-distribution-piping": 1,
# "gas-distribution-regulator": 2,
# "gas-distribution-valve": 3,
# }
# idx_to_classes = {v: k for k, v in class_to_idx.items()}
# modelname = "resnet50d"
# model_weights = "best_classifer_model.pt"
# num_classes = len(classes)
# classifier_model = timm.create_model(
# "resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
# )
# classifier_model.load_state_dict(
# torch.load(model_weights, map_location=torch.device("cpu"))["model_state_dict"]
# )
# musiq_metric = pyiqa.create_metric("musiq-koniq", device=torch.device("cpu"))
# image_sim_model = SentenceTransformer("patrickjohncyh/fashion-clip")
# from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
# processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
# model = AutoModelForZeroShotImageClassification.from_pretrained("patrickjohncyh/fashion-clip")
# model_ckpt = "nateraw/vit-base-beans"
# extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
# image_sim_model = AutoModel.from_pretrained(model_ckpt)
fclip = FashionCLIP('fashion-clip')
app = FastAPI(title="CV Demos")
# Define the Response
class Prediction(BaseModel):
filename: str
contenttype: str
prediction: List[float] = []
# define response
@app.get("/")
def root_route():
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
# @app.post(
# DETECTION_URL,
# )
# async def predict(file: UploadFile = File(...), quality_check: bool = False):
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents))
# if quality_check:
# print("RUNNING QUALITY CEHCK BEFORE OBJEFCT DETECTION!!!")
# tmp_file = f"{TMP_DIR}/tmp.png"
# pil_image.save(tmp_file)
# score = musiq_metric(tmp_file)
# if score < 50:
# return {
# "Error": "Image quality is not sufficient enough to be considered for object detection"
# }
# results = model(pil_image, size=640) # reduce size=320 for faster inference
# return results.pandas().xyxy[0].to_json(orient="records")
# except:
# e = sys.exc_info()[1]
# raise HTTPException(status_code=500, detail=str(e))
# @app.post(CLASSIFICATION_URL)
# async def classify(file: UploadFile = File(...)):
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents))
# data_mean = (0.485, 0.456, 0.406)
# data_std = (0.229, 0.224, 0.225)
# image_size = (224, 224)
# eval_transforms = timm.data.create_transform(
# input_size=image_size, mean=data_mean, std=data_std
# )
# eval_transforms(pil_image).unsqueeze(dim=0).shape
# classifier_model.eval()
# print("RUNNING Image Classification!!!")
# max_class_idx = np.argmax(
# classifier_model(eval_transforms(pil_image).unsqueeze(dim=0)).detach().numpy()
# )
# predicted_class = idx_to_classes[max_class_idx]
# print(f"Predicted Class idx: {max_class_idx} with name : {predicted_class}")
# return {"object": predicted_class}
# except:
# e = sys.exc_info()[1]
# raise HTTPException(status_code=500, detail=str(e))
# @app.post(QUALITY_ASSESSMENT_URL)
# async def quality_check(file: UploadFile = File(...)):
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents))
# tmp_file = f"{TMP_DIR}/tmp.png"
# pil_image.save(tmp_file)
# score = musiq_metric(tmp_file).detach().numpy().tolist()
# return {"score": score}
# except:
# e = sys.exc_info()[1]
# raise HTTPException(status_code=500, detail=str(e))
# def anonymize_simple(image, factor=3.0):
# # automatically determine the size of the blurring kernel based
# # on the spatial dimensions of the input image
# (h, w) = image.shape[:2]
# kW = int(w / factor)
# kH = int(h / factor)
# # ensure the width of the kernel is odd
# if kW % 2 == 0:
# kW -= 1
# # ensure the height of the kernel is odd
# if kH % 2 == 0:
# kH -= 1
# # apply a Gaussian blur to the input image using our computed
# # kernel size
# return cv2.GaussianBlur(image, (kW, kH), 0)
# def anonymize_pixelate(image, blocks=3):
# # divide the input image into NxN blocks
# (h, w) = image.shape[:2]
# xSteps = np.linspace(0, w, blocks + 1, dtype="int")
# ySteps = np.linspace(0, h, blocks + 1, dtype="int")
# # loop over the blocks in both the x and y direction
# for i in range(1, len(ySteps)):
# for j in range(1, len(xSteps)):
# # compute the starting and ending (x, y)-coordinates
# # for the current block
# startX = xSteps[j - 1]
# startY = ySteps[i - 1]
# endX = xSteps[j]
# endY = ySteps[i]
# # extract the ROI using NumPy array slicing, compute the
# # mean of the ROI, and then draw a rectangle with the
# # mean RGB values over the ROI in the original image
# roi = image[startY:endY, startX:endX]
# (B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
# cv2.rectangle(image, (startX, startY), (endX, endY), (B, G, R), -1)
# # return the pixelated blurred image
# return image
# # define response
# @app.get("/")
# def root_route():
# return {"error": f"Use GET {FACE_URL} or {LICENCE_URL} instead of the root route!"}
# @app.post(
# FACE_URL,
# )
# async def face_anonymize(
# file: UploadFile = File(...), blur_type="simple", quality_check: bool = False
# ):
# """
# https://pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/
# """
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents)).convert("RGB")
# detector = cv2.dnn.DetectionModel(
# "res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
# )
# open_cv_image = np.array(pil_image)
# # Convert RGB to BGR
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# (h, w) = open_cv_image.shape[:2]
# # Getting the detections
# detections = detector.detect(open_cv_image)
# if len(detections[2]) > 0:
# for face in detections[2]:
# (x, y, w, h) = face.astype("int")
# # extract the face ROI
# face = open_cv_image[y : y + h, x : x + w]
# if blur_type == "simple":
# face = anonymize_simple(face)
# else:
# face = anonymize_pixelate(face)
# open_cv_image[y : y + h, x : x + w] = face
# _, encoded_img = cv2.imencode(".PNG", open_cv_image)
# encoded_img = base64.b64encode(encoded_img)
# return {
# "filename": file.filename,
# "dimensions": str(open_cv_image.shape),
# "encoded_img": encoded_img,
# }
# except:
# e = sys.exc_info()[1]
# print(traceback.format_exc())
# raise HTTPException(status_code=500, detail=str(e))
# @app.post(LICENCE_URL)
# async def licence_anonymize(file: UploadFile = File(...), blur_type="simple"):
# """https://www.kaggle.com/code/gowrishankarp/license-plate-detection-yolov5-pytesseract/notebook#Visualize"""
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents))
# results = licence_model(pil_image, size=640) # reduce size=320 for faster inference
# pil_image = pil_image.convert("RGB")
# open_cv_image = np.array(pil_image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# df = results.pandas().xyxy[0]
# for i, row in df.iterrows():
# xmin = int(row["xmin"])
# ymin = int(row["ymin"])
# xmax = int(row["xmax"])
# ymax = int(row["ymax"])
# licence = open_cv_image[ymin:ymax, xmin:xmax]
# if blur_type == "simple":
# licence = anonymize_simple(licence)
# else:
# licence = anonymize_pixelate(licence)
# open_cv_image[ymin:ymax, xmin:xmax] = licence
# _, encoded_img = cv2.imencode(".PNG", open_cv_image)
# encoded_img = base64.b64encode(encoded_img)
# return {
# "filename": file.filename,
# "dimensions": str(open_cv_image.shape),
# "encoded_img": encoded_img,
# }
# except:
# e = sys.exc_info()[1]
# raise HTTPException(status_code=500, detail=str(e))
# def process_document(image, question):
# # prepare encoder inputs
# pixel_values = processor(image, return_tensors="pt").pixel_values
# # prepare decoder inputs
# task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
# prompt = task_prompt.replace("{user_input}", question)
# decoder_input_ids = processor.tokenizer(
# prompt, add_special_tokens=False, return_tensors="pt"
# ).input_ids
# # generate answer
# outputs = doc_qa_model.generate(
# pixel_values.to(device),
# decoder_input_ids=decoder_input_ids.to(device),
# max_length=doc_qa_model.decoder.config.max_position_embeddings,
# early_stopping=True,
# pad_token_id=processor.tokenizer.pad_token_id,
# eos_token_id=processor.tokenizer.eos_token_id,
# use_cache=True,
# num_beams=1,
# bad_words_ids=[[processor.tokenizer.unk_token_id]],
# return_dict_in_generate=True,
# )
# # postprocess
# sequence = processor.batch_decode(outputs.sequences)[0]
# sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
# processor.tokenizer.pad_token, ""
# )
# sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# return processor.token2json(sequence)
# @app.post(DOCUMENT_QA)
# async def document_qa(question: str = Form(...), file: UploadFile = File(...)):
# try:
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
# if not extension:
# return "Image must be jpg or png format!"
# # read image contain
# contents = await file.read()
# pil_image = Image.open(io.BytesIO(contents))
# # tmp_file = f"{TMP_DIR}/tmp.png"
# # pil_image.save(tmp_file)
# # answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
# answer = process_document(pil_image, question)["answer"]
# return {"answer": answer}
# except:
# e = sys.exc_info()[1]
# raise HTTPException(status_code=500, detail=str(e))
@app.post(IMAGE_SIMILARITY_DEMO)
async def image_search_local(
images_to_search: List[UploadFile], query_image: UploadFile = File(...), top_k: int = 5
):
print(
f"Recived images of length: {len(images_to_search)} needs to retrieve top k : {top_k} similar images as result"
)
try:
extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png")
search_images = []
search_filenames = []
print("Processing request...")
for image in images_to_search:
if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png"):
return "Image must be jpg or png format!"
# read image contain
search_filenames.append(image.filename)
contents = await image.read()
search_images.append(Image.open(io.BytesIO(contents)))
print("Indexing images to search...")
corpus_embeddings = image_sim_model.encode(
search_images, convert_to_tensor=True, show_progress_bar=True
)
if not extension:
return "Image must be jpg or png format!"
# read image contain
contents = await query_image.read()
query_image = Image.open(io.BytesIO(contents))
print("Indexing query image...")
prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True)
print("Searching query image...")
hits = util.semantic_search(prompt_embedding, corpus_embeddings, top_k=top_k)
# hits = pd.DataFrame(hits[0], columns=['corpus_id', 'score'])
# tmp_file = f"{TMP_DIR}/tmp.png"
# pil_image.save(tmp_file)
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
print("Creating the result..")
similar_images = []
print("hits ", hits)
for hit in hits[0]:
# print("Finding the image ")
# print("Type of images list ", type(search_images), "similar image id ", hit['corpus_id'])
open_cv_image = np.array(search_images[hit["corpus_id"]].convert("RGB"))[:, :, ::-1]
# print("cv2.imencode the image ")
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
# print("base64 the image ")
encoded_img = base64.b64encode(encoded_img)
# print("Appending the image ")
similar_images.append(
{
"filename": search_filenames[hit["corpus_id"]],
"dimensions": str(open_cv_image.shape),
"score": hit["score"],
"encoded_img": encoded_img,
}
)
print("Sending result..")
return {"similar_images": similar_images}
except:
e = sys.exc_info()[1]
raise HTTPException(status_code=500, detail=str(e))
@app.post(IMAGE_SIMILARITY_PINECONE_DEMO)
async def image_search_pinecone(
images_to_search: Optional[List[UploadFile]] = File(None),
query_image: Optional[UploadFile] = File(None),
top_k: int = 5,
namespace="av_local",
action="query",
):
try:
# Function to delete all files from the database
print(f"Received request with images_to_search: {images_to_search} and query_image: {query_image} with action: {action}")
if action == "delete":
index = pinecone.Index(INDEX_NAME)
delete_response = index.delete(delete_all=True, namespace=namespace)
return {f"Deleted the namespace: {namespace}": delete_response}
elif action == "query" and query_image is not None:
extension = query_image.filename.split(".")[-1] in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG")
if not extension:
return "Image must be jpg or png format!"
# read image contain
contents = await query_image.read()
query_image = Image.open(io.BytesIO(contents))
print("Indexing query image...")
query_image = enhance_image(query_image)
# prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True).tolist()
prompt_embedding = fclip.encode_images([query_image], batch_size=32)[0]
if INDEX_NAME not in pinecone.list_indexes():
return {"similar_images": [], "status": "No index found for images"}
else:
index = pinecone.Index(INDEX_NAME)
query_response = index.query(
namespace=namespace,
top_k=top_k,
include_values=True,
include_metadata=True,
vector=prompt_embedding,
)
result_images = [d["metadata"]["file_path"] for d in query_response["matches"]]
print("Creating the result..")
similar_images = []
print("Retrieved matches ", query_response["matches"])
for file_path in result_images:
try:
# print("Finding the image ")
# print("Type of images list ", type(search_images), "similar image id ", hit['corpus_id'])
open_cv_image = cv2.imread(file_path)
# print("cv2.imencode the image ")
_, encoded_img = cv2.imencode(".PNG", open_cv_image)
# print("base64 the image ")
encoded_img = base64.b64encode(encoded_img)
# print("Appending the image ")
similar_images.append(
{
"filename": file_path,
"dimensions": str(open_cv_image.shape),
"score": 0,
"encoded_img": encoded_img,
}
)
except:
similar_images.append(
{
"filename": file_path,
"dimensions": None,
"score": 0,
"encoded_img": None,
}
)
print("Sending result..")
return {"similar_images": similar_images}
elif action == "index" and len(images_to_search) > 0:
print(
f"Recived images of length: {len(images_to_search)} needs to retrieve top k : {top_k} similar images as result"
)
print(f"Action indexing is executing for : {len(images_to_search)} images")
# if the index does not already exist, we create it
# check if the abstractive-question-answering index exists
print("checking pinecone Index")
if INDEX_NAME not in pinecone.list_indexes():
# delete the current index and create the new index if it does not exist
for delete_index in pinecone.list_indexes():
print(f"Deleting exitsing pinecone Index : {delete_index}")
pinecone.delete_index(delete_index)
print(f"Creating new pinecone Index : {INDEX_NAME}")
pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
# instantiate connection to your Pinecone index
print(f"Connecting to pinecone Index : {INDEX_NAME}")
index = pinecone.Index(INDEX_NAME)
search_images = []
meta_datas = []
ids = []
print("Processing request...")
for image in images_to_search:
if image.filename.split(".")[-1] not in ("jpg", "jpeg", "png", "JPG", "PNG", "JPEG"):
return "Image must be jpg or png format!"
# read image contain
contents = await image.read()
pil_image = Image.open(io.BytesIO(contents))
tmp_file = f"{TMP_DIR}/{image.filename}"
pil_image.save(tmp_file)
meta_datas.append({"file_path": tmp_file})
search_images.append(pil_image)
ids.append(str(uuid.uuid1()).replace("-",""))
print("Encoding images to vectors...")
# corpus_embeddings = image_sim_model.encode(
# search_images, convert_to_tensor=True, show_progress_bar=True
# ).tolist()
corpus_embeddings = fclip.encode_images(search_images, batch_size=32)[0]
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
index.upsert(
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
)
return {"similar_images": [], "status": "Indexing succesfull for uploaded files"}
else:
return {"similar_images": []}
except Exception as e:
e = sys.exc_info()[1]
print(f"exception happened {e} {str(traceback.print_exc())}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fast API exposing YOLOv5 model")
parser.add_argument("--port", default=8000, type=int, help="port number")
# parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
opt = parser.parse_args()
uvicorn.run(app, port=opt.port) |