computer-vision-backend / download_models.py
Abhilashvj's picture
Duplicate from Abhilashvj/computer-vision-backend
31e192b
raw
history blame
1.64 kB
import os
import re
import cv2
import numpy as np
import io
import sys
import numpy as np
import timm
import pyiqa
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
licence_model = torch.hub.load(
"ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
)
licence_model.cpu()
detector = cv2.dnn.DetectionModel("res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt")
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
doc_qa_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
device = "cuda" if torch.cuda.is_available() else "cpu"
doc_qa_model.to(device)
model = torch.hub.load(
"ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
)
model.cpu()
classes = [
"gas-distribution-meter",
"gas-distribution-piping",
"gas-distribution-regulator",
"gas-distribution-valve"
]
class_to_idx = {'gas-distribution-meter': 0,
'gas-distribution-piping': 1,
'gas-distribution-regulator': 2,
'gas-distribution-valve': 3}
idx_to_classes = {v:k for k,v in class_to_idx.items()}
modelname = "resnet50d"
model_weights = "best_classifer_model.pt"
num_classes = len(classes)
classifier_model = timm.create_model(
"resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
)
classifier_model.load_state_dict(torch.load(model_weights, map_location=torch.device('cpu'))["model_state_dict"])
musiq_metric = pyiqa.create_metric('musiq-koniq', device=torch.device('cpu'))