Spaces:
Runtime error
Runtime error
Commit
Β·
98e4681
1
Parent(s):
dca463b
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import sys
|
|
7 |
import traceback
|
8 |
import uuid
|
9 |
from typing import List, Optional
|
|
|
|
|
10 |
|
11 |
import cv2
|
12 |
import numpy as np
|
@@ -30,6 +32,10 @@ IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
|
30 |
INDEX_NAME = "imagesearch-demo"
|
31 |
INDEX_DIMENSION = 512
|
32 |
TMP_DIR = "tmp"
|
|
|
|
|
|
|
|
|
33 |
|
34 |
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
35 |
|
@@ -178,6 +184,12 @@ async def image_search_local(
|
|
178 |
raise HTTPException(status_code=500, detail=str(e))
|
179 |
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
@app.post(IMAGE_SIMILARITY_PINECONE_DEMO)
|
182 |
async def image_search_pinecone(
|
183 |
images_to_search: Optional[List[UploadFile]] = File(None),
|
@@ -204,7 +216,10 @@ async def image_search_pinecone(
|
|
204 |
query_image = Image.open(io.BytesIO(contents))
|
205 |
print("Indexing query image...")
|
206 |
query_image = enhance_image(query_image)
|
207 |
-
|
|
|
|
|
|
|
208 |
if INDEX_NAME not in pinecone.list_indexes():
|
209 |
return {"similar_images": [], "status": "No index found for images"}
|
210 |
|
@@ -281,6 +296,7 @@ async def image_search_pinecone(
|
|
281 |
# read image contain
|
282 |
contents = await image.read()
|
283 |
pil_image = Image.open(io.BytesIO(contents))
|
|
|
284 |
tmp_file = f"{TMP_DIR}/{image.filename}"
|
285 |
pil_image.save(tmp_file)
|
286 |
meta_datas.append({"file_path": tmp_file})
|
@@ -288,9 +304,12 @@ async def image_search_pinecone(
|
|
288 |
ids.append(str(uuid.uuid1()).replace("-",""))
|
289 |
|
290 |
print("Encoding images to vectors...")
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
294 |
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
|
295 |
index.upsert(
|
296 |
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
|
|
|
7 |
import traceback
|
8 |
import uuid
|
9 |
from typing import List, Optional
|
10 |
+
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
11 |
+
from transformers import CLIPProcessor, CLIPModel
|
12 |
|
13 |
import cv2
|
14 |
import numpy as np
|
|
|
32 |
INDEX_NAME = "imagesearch-demo"
|
33 |
INDEX_DIMENSION = 512
|
34 |
TMP_DIR = "tmp"
|
35 |
+
model_type = "huggingface"
|
36 |
+
# model_type = "sentence_transformers"
|
37 |
+
processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
|
38 |
+
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
|
39 |
|
40 |
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
41 |
|
|
|
184 |
raise HTTPException(status_code=500, detail=str(e))
|
185 |
|
186 |
|
187 |
+
def get_clip_vectors(image):
|
188 |
+
img_inputs = processor(images=image, return_tensors="pt")
|
189 |
+
img_emb = model.get_image_features(**img_inputs)
|
190 |
+
|
191 |
+
return img_emb
|
192 |
+
|
193 |
@app.post(IMAGE_SIMILARITY_PINECONE_DEMO)
|
194 |
async def image_search_pinecone(
|
195 |
images_to_search: Optional[List[UploadFile]] = File(None),
|
|
|
216 |
query_image = Image.open(io.BytesIO(contents))
|
217 |
print("Indexing query image...")
|
218 |
query_image = enhance_image(query_image)
|
219 |
+
if model_type =="huggingface":
|
220 |
+
prompt_embedding = get_clip_vectors(query_image)
|
221 |
+
else:
|
222 |
+
prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True).tolist()
|
223 |
if INDEX_NAME not in pinecone.list_indexes():
|
224 |
return {"similar_images": [], "status": "No index found for images"}
|
225 |
|
|
|
296 |
# read image contain
|
297 |
contents = await image.read()
|
298 |
pil_image = Image.open(io.BytesIO(contents))
|
299 |
+
pil_image = enhance_image(pil_image)
|
300 |
tmp_file = f"{TMP_DIR}/{image.filename}"
|
301 |
pil_image.save(tmp_file)
|
302 |
meta_datas.append({"file_path": tmp_file})
|
|
|
304 |
ids.append(str(uuid.uuid1()).replace("-",""))
|
305 |
|
306 |
print("Encoding images to vectors...")
|
307 |
+
if model_type =="huggingface":
|
308 |
+
corpus_embeddings = get_clip_vectors(query_image).tolist()
|
309 |
+
else:
|
310 |
+
corpus_embeddings = image_sim_model.encode(
|
311 |
+
search_images, convert_to_tensor=True, show_progress_bar=True
|
312 |
+
).tolist()
|
313 |
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
|
314 |
index.upsert(
|
315 |
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
|