Spaces:
Runtime error
Runtime error
Commit
Β·
f4f6792
1
Parent(s):
173cecf
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
import argparse
|
4 |
import base64
|
5 |
import io
|
@@ -9,8 +7,7 @@ import sys
|
|
9 |
import traceback
|
10 |
import uuid
|
11 |
from typing import List, Optional
|
12 |
-
|
13 |
-
import traceback
|
14 |
import cv2
|
15 |
import numpy as np
|
16 |
import pandas as pd
|
@@ -21,30 +18,21 @@ import torch
|
|
21 |
import uvicorn
|
22 |
from dotenv import load_dotenv
|
23 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
24 |
-
from PIL import Image
|
25 |
from pydantic import BaseModel
|
26 |
from sentence_transformers import SentenceTransformer, util
|
27 |
-
|
28 |
-
AutoFeatureExtractor,
|
29 |
-
AutoModel,
|
30 |
-
DonutProcessor,
|
31 |
-
VisionEncoderDecoderModel,
|
32 |
-
)
|
33 |
-
from fashion_clip.fashion_clip import FashionCLIP
|
34 |
load_dotenv()
|
35 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
36 |
-
|
37 |
-
CLASSIFICATION_URL = "/object-classification/"
|
38 |
-
QUALITY_ASSESSMENT_URL = "/quality-assessment/"
|
39 |
-
FACE_URL = "/face-anonymization/"
|
40 |
-
LICENCE_URL = "/licenceplate-anonymization/"
|
41 |
-
DOCUMENT_QA = "/document-qa/"
|
42 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
43 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
44 |
INDEX_NAME = "imagesearch-demo"
|
45 |
INDEX_DIMENSION = 512
|
46 |
TMP_DIR = "tmp"
|
47 |
|
|
|
|
|
48 |
def enhance_image(pil_image):
|
49 |
# Convert PIL Image to OpenCV format
|
50 |
open_cv_image = np.array(pil_image)
|
@@ -86,84 +74,34 @@ def enhance_image(pil_image):
|
|
86 |
return enhanced_pil_image
|
87 |
|
88 |
|
|
|
89 |
if INDEX_NAME not in pinecone.list_indexes():
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
print("Connecting to Pinecone Index")
|
93 |
index = pinecone.Index(INDEX_NAME)
|
94 |
|
95 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
96 |
|
97 |
-
|
98 |
-
# "ultralytics/yolov5", "custom", path="Licenseplate_model.pt", device="cpu", force_reload=True
|
99 |
-
# )
|
100 |
-
# licence_model.cpu()
|
101 |
|
102 |
-
|
103 |
-
# "res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
104 |
-
# )
|
105 |
|
106 |
-
# processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
107 |
-
# doc_qa_model = VisionEncoderDecoderModel.from_pretrained(
|
108 |
-
# "naver-clova-ix/donut-base-finetuned-docvqa"
|
109 |
-
# )
|
110 |
|
111 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
112 |
-
# doc_qa_model.to(device)
|
113 |
|
114 |
|
115 |
os.makedirs(TMP_DIR, exist_ok=True)
|
116 |
|
117 |
-
# model = torch.hub.load(
|
118 |
-
# "ultralytics/yolov5", "custom", path="best.pt", device="cpu", force_reload=True
|
119 |
-
# )
|
120 |
-
# model.cpu()
|
121 |
-
|
122 |
-
# classes = [
|
123 |
-
# "gas-distribution-meter",
|
124 |
-
# "gas-distribution-piping",
|
125 |
-
# "gas-distribution-regulator",
|
126 |
-
# "gas-distribution-valve",
|
127 |
-
# ]
|
128 |
-
|
129 |
-
# class_to_idx = {
|
130 |
-
# "gas-distribution-meter": 0,
|
131 |
-
# "gas-distribution-piping": 1,
|
132 |
-
# "gas-distribution-regulator": 2,
|
133 |
-
# "gas-distribution-valve": 3,
|
134 |
-
# }
|
135 |
-
|
136 |
-
# idx_to_classes = {v: k for k, v in class_to_idx.items()}
|
137 |
-
# modelname = "resnet50d"
|
138 |
-
# model_weights = "best_classifer_model.pt"
|
139 |
-
# num_classes = len(classes)
|
140 |
-
|
141 |
-
# classifier_model = timm.create_model(
|
142 |
-
# "resnet50d", pretrained=True, num_classes=num_classes, drop_path_rate=0.05
|
143 |
-
# )
|
144 |
-
# classifier_model.load_state_dict(
|
145 |
-
# torch.load(model_weights, map_location=torch.device("cpu"))["model_state_dict"]
|
146 |
-
# )
|
147 |
-
|
148 |
-
# musiq_metric = pyiqa.create_metric("musiq-koniq", device=torch.device("cpu"))
|
149 |
-
# image_sim_model = SentenceTransformer("patrickjohncyh/fashion-clip")
|
150 |
-
# from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
151 |
-
|
152 |
-
# processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
|
153 |
-
# model = AutoModelForZeroShotImageClassification.from_pretrained("patrickjohncyh/fashion-clip")
|
154 |
-
|
155 |
-
# model_ckpt = "nateraw/vit-base-beans"
|
156 |
-
# extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
157 |
-
# image_sim_model = AutoModel.from_pretrained(model_ckpt)
|
158 |
-
fclip = FashionCLIP('fashion-clip')
|
159 |
|
160 |
-
app = FastAPI(title="CV Demos")
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
filename: str
|
165 |
-
contenttype: str
|
166 |
-
prediction: List[float] = []
|
167 |
|
168 |
|
169 |
# define response
|
@@ -172,280 +110,6 @@ def root_route():
|
|
172 |
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
|
173 |
|
174 |
|
175 |
-
# @app.post(
|
176 |
-
# DETECTION_URL,
|
177 |
-
# )
|
178 |
-
# async def predict(file: UploadFile = File(...), quality_check: bool = False):
|
179 |
-
# try:
|
180 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
181 |
-
# if not extension:
|
182 |
-
# return "Image must be jpg or png format!"
|
183 |
-
# # read image contain
|
184 |
-
# contents = await file.read()
|
185 |
-
# pil_image = Image.open(io.BytesIO(contents))
|
186 |
-
# if quality_check:
|
187 |
-
# print("RUNNING QUALITY CEHCK BEFORE OBJEFCT DETECTION!!!")
|
188 |
-
# tmp_file = f"{TMP_DIR}/tmp.png"
|
189 |
-
# pil_image.save(tmp_file)
|
190 |
-
# score = musiq_metric(tmp_file)
|
191 |
-
# if score < 50:
|
192 |
-
# return {
|
193 |
-
# "Error": "Image quality is not sufficient enough to be considered for object detection"
|
194 |
-
# }
|
195 |
-
|
196 |
-
# results = model(pil_image, size=640) # reduce size=320 for faster inference
|
197 |
-
# return results.pandas().xyxy[0].to_json(orient="records")
|
198 |
-
# except:
|
199 |
-
# e = sys.exc_info()[1]
|
200 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
201 |
-
|
202 |
-
|
203 |
-
# @app.post(CLASSIFICATION_URL)
|
204 |
-
# async def classify(file: UploadFile = File(...)):
|
205 |
-
# try:
|
206 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
207 |
-
# if not extension:
|
208 |
-
# return "Image must be jpg or png format!"
|
209 |
-
# # read image contain
|
210 |
-
# contents = await file.read()
|
211 |
-
# pil_image = Image.open(io.BytesIO(contents))
|
212 |
-
# data_mean = (0.485, 0.456, 0.406)
|
213 |
-
# data_std = (0.229, 0.224, 0.225)
|
214 |
-
# image_size = (224, 224)
|
215 |
-
# eval_transforms = timm.data.create_transform(
|
216 |
-
# input_size=image_size, mean=data_mean, std=data_std
|
217 |
-
# )
|
218 |
-
# eval_transforms(pil_image).unsqueeze(dim=0).shape
|
219 |
-
# classifier_model.eval()
|
220 |
-
# print("RUNNING Image Classification!!!")
|
221 |
-
# max_class_idx = np.argmax(
|
222 |
-
# classifier_model(eval_transforms(pil_image).unsqueeze(dim=0)).detach().numpy()
|
223 |
-
# )
|
224 |
-
# predicted_class = idx_to_classes[max_class_idx]
|
225 |
-
# print(f"Predicted Class idx: {max_class_idx} with name : {predicted_class}")
|
226 |
-
# return {"object": predicted_class}
|
227 |
-
|
228 |
-
# except:
|
229 |
-
# e = sys.exc_info()[1]
|
230 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
231 |
-
|
232 |
-
|
233 |
-
# @app.post(QUALITY_ASSESSMENT_URL)
|
234 |
-
# async def quality_check(file: UploadFile = File(...)):
|
235 |
-
# try:
|
236 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
237 |
-
# if not extension:
|
238 |
-
# return "Image must be jpg or png format!"
|
239 |
-
# # read image contain
|
240 |
-
# contents = await file.read()
|
241 |
-
# pil_image = Image.open(io.BytesIO(contents))
|
242 |
-
# tmp_file = f"{TMP_DIR}/tmp.png"
|
243 |
-
# pil_image.save(tmp_file)
|
244 |
-
# score = musiq_metric(tmp_file).detach().numpy().tolist()
|
245 |
-
# return {"score": score}
|
246 |
-
|
247 |
-
# except:
|
248 |
-
# e = sys.exc_info()[1]
|
249 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
250 |
-
|
251 |
-
|
252 |
-
# def anonymize_simple(image, factor=3.0):
|
253 |
-
# # automatically determine the size of the blurring kernel based
|
254 |
-
# # on the spatial dimensions of the input image
|
255 |
-
# (h, w) = image.shape[:2]
|
256 |
-
# kW = int(w / factor)
|
257 |
-
# kH = int(h / factor)
|
258 |
-
# # ensure the width of the kernel is odd
|
259 |
-
# if kW % 2 == 0:
|
260 |
-
# kW -= 1
|
261 |
-
# # ensure the height of the kernel is odd
|
262 |
-
# if kH % 2 == 0:
|
263 |
-
# kH -= 1
|
264 |
-
# # apply a Gaussian blur to the input image using our computed
|
265 |
-
# # kernel size
|
266 |
-
# return cv2.GaussianBlur(image, (kW, kH), 0)
|
267 |
-
|
268 |
-
|
269 |
-
# def anonymize_pixelate(image, blocks=3):
|
270 |
-
# # divide the input image into NxN blocks
|
271 |
-
# (h, w) = image.shape[:2]
|
272 |
-
# xSteps = np.linspace(0, w, blocks + 1, dtype="int")
|
273 |
-
# ySteps = np.linspace(0, h, blocks + 1, dtype="int")
|
274 |
-
# # loop over the blocks in both the x and y direction
|
275 |
-
# for i in range(1, len(ySteps)):
|
276 |
-
# for j in range(1, len(xSteps)):
|
277 |
-
# # compute the starting and ending (x, y)-coordinates
|
278 |
-
# # for the current block
|
279 |
-
# startX = xSteps[j - 1]
|
280 |
-
# startY = ySteps[i - 1]
|
281 |
-
# endX = xSteps[j]
|
282 |
-
# endY = ySteps[i]
|
283 |
-
# # extract the ROI using NumPy array slicing, compute the
|
284 |
-
# # mean of the ROI, and then draw a rectangle with the
|
285 |
-
# # mean RGB values over the ROI in the original image
|
286 |
-
# roi = image[startY:endY, startX:endX]
|
287 |
-
# (B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
|
288 |
-
# cv2.rectangle(image, (startX, startY), (endX, endY), (B, G, R), -1)
|
289 |
-
# # return the pixelated blurred image
|
290 |
-
# return image
|
291 |
-
|
292 |
-
|
293 |
-
# # define response
|
294 |
-
# @app.get("/")
|
295 |
-
# def root_route():
|
296 |
-
# return {"error": f"Use GET {FACE_URL} or {LICENCE_URL} instead of the root route!"}
|
297 |
-
|
298 |
-
|
299 |
-
# @app.post(
|
300 |
-
# FACE_URL,
|
301 |
-
# )
|
302 |
-
# async def face_anonymize(
|
303 |
-
# file: UploadFile = File(...), blur_type="simple", quality_check: bool = False
|
304 |
-
# ):
|
305 |
-
# """
|
306 |
-
# https://pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/
|
307 |
-
# """
|
308 |
-
# try:
|
309 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
310 |
-
# if not extension:
|
311 |
-
# return "Image must be jpg or png format!"
|
312 |
-
# # read image contain
|
313 |
-
# contents = await file.read()
|
314 |
-
# pil_image = Image.open(io.BytesIO(contents)).convert("RGB")
|
315 |
-
# detector = cv2.dnn.DetectionModel(
|
316 |
-
# "res10_300x300_ssd_iter_140000_fp16.caffemodel", "deploy.prototxt"
|
317 |
-
# )
|
318 |
-
# open_cv_image = np.array(pil_image)
|
319 |
-
# # Convert RGB to BGR
|
320 |
-
# open_cv_image = open_cv_image[:, :, ::-1].copy()
|
321 |
-
# (h, w) = open_cv_image.shape[:2]
|
322 |
-
# # Getting the detections
|
323 |
-
# detections = detector.detect(open_cv_image)
|
324 |
-
# if len(detections[2]) > 0:
|
325 |
-
# for face in detections[2]:
|
326 |
-
# (x, y, w, h) = face.astype("int")
|
327 |
-
# # extract the face ROI
|
328 |
-
|
329 |
-
# face = open_cv_image[y : y + h, x : x + w]
|
330 |
-
# if blur_type == "simple":
|
331 |
-
# face = anonymize_simple(face)
|
332 |
-
# else:
|
333 |
-
# face = anonymize_pixelate(face)
|
334 |
-
# open_cv_image[y : y + h, x : x + w] = face
|
335 |
-
|
336 |
-
# _, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
337 |
-
|
338 |
-
# encoded_img = base64.b64encode(encoded_img)
|
339 |
-
# return {
|
340 |
-
# "filename": file.filename,
|
341 |
-
# "dimensions": str(open_cv_image.shape),
|
342 |
-
# "encoded_img": encoded_img,
|
343 |
-
# }
|
344 |
-
# except:
|
345 |
-
# e = sys.exc_info()[1]
|
346 |
-
# print(traceback.format_exc())
|
347 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
348 |
-
|
349 |
-
|
350 |
-
# @app.post(LICENCE_URL)
|
351 |
-
# async def licence_anonymize(file: UploadFile = File(...), blur_type="simple"):
|
352 |
-
# """https://www.kaggle.com/code/gowrishankarp/license-plate-detection-yolov5-pytesseract/notebook#Visualize"""
|
353 |
-
# try:
|
354 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
355 |
-
# if not extension:
|
356 |
-
# return "Image must be jpg or png format!"
|
357 |
-
# # read image contain
|
358 |
-
# contents = await file.read()
|
359 |
-
# pil_image = Image.open(io.BytesIO(contents))
|
360 |
-
# results = licence_model(pil_image, size=640) # reduce size=320 for faster inference
|
361 |
-
# pil_image = pil_image.convert("RGB")
|
362 |
-
# open_cv_image = np.array(pil_image)
|
363 |
-
# open_cv_image = open_cv_image[:, :, ::-1].copy()
|
364 |
-
# df = results.pandas().xyxy[0]
|
365 |
-
# for i, row in df.iterrows():
|
366 |
-
# xmin = int(row["xmin"])
|
367 |
-
# ymin = int(row["ymin"])
|
368 |
-
# xmax = int(row["xmax"])
|
369 |
-
# ymax = int(row["ymax"])
|
370 |
-
# licence = open_cv_image[ymin:ymax, xmin:xmax]
|
371 |
-
# if blur_type == "simple":
|
372 |
-
# licence = anonymize_simple(licence)
|
373 |
-
# else:
|
374 |
-
# licence = anonymize_pixelate(licence)
|
375 |
-
# open_cv_image[ymin:ymax, xmin:xmax] = licence
|
376 |
-
|
377 |
-
# _, encoded_img = cv2.imencode(".PNG", open_cv_image)
|
378 |
-
|
379 |
-
# encoded_img = base64.b64encode(encoded_img)
|
380 |
-
# return {
|
381 |
-
# "filename": file.filename,
|
382 |
-
# "dimensions": str(open_cv_image.shape),
|
383 |
-
# "encoded_img": encoded_img,
|
384 |
-
# }
|
385 |
-
|
386 |
-
# except:
|
387 |
-
# e = sys.exc_info()[1]
|
388 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
389 |
-
|
390 |
-
|
391 |
-
# def process_document(image, question):
|
392 |
-
# # prepare encoder inputs
|
393 |
-
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
394 |
-
|
395 |
-
# # prepare decoder inputs
|
396 |
-
# task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
397 |
-
# prompt = task_prompt.replace("{user_input}", question)
|
398 |
-
# decoder_input_ids = processor.tokenizer(
|
399 |
-
# prompt, add_special_tokens=False, return_tensors="pt"
|
400 |
-
# ).input_ids
|
401 |
-
|
402 |
-
# # generate answer
|
403 |
-
# outputs = doc_qa_model.generate(
|
404 |
-
# pixel_values.to(device),
|
405 |
-
# decoder_input_ids=decoder_input_ids.to(device),
|
406 |
-
# max_length=doc_qa_model.decoder.config.max_position_embeddings,
|
407 |
-
# early_stopping=True,
|
408 |
-
# pad_token_id=processor.tokenizer.pad_token_id,
|
409 |
-
# eos_token_id=processor.tokenizer.eos_token_id,
|
410 |
-
# use_cache=True,
|
411 |
-
# num_beams=1,
|
412 |
-
# bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
413 |
-
# return_dict_in_generate=True,
|
414 |
-
# )
|
415 |
-
|
416 |
-
# # postprocess
|
417 |
-
# sequence = processor.batch_decode(outputs.sequences)[0]
|
418 |
-
# sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
419 |
-
# processor.tokenizer.pad_token, ""
|
420 |
-
# )
|
421 |
-
# sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
422 |
-
|
423 |
-
# return processor.token2json(sequence)
|
424 |
-
|
425 |
-
|
426 |
-
# @app.post(DOCUMENT_QA)
|
427 |
-
# async def document_qa(question: str = Form(...), file: UploadFile = File(...)):
|
428 |
-
|
429 |
-
# try:
|
430 |
-
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
431 |
-
# if not extension:
|
432 |
-
# return "Image must be jpg or png format!"
|
433 |
-
# # read image contain
|
434 |
-
# contents = await file.read()
|
435 |
-
# pil_image = Image.open(io.BytesIO(contents))
|
436 |
-
# # tmp_file = f"{TMP_DIR}/tmp.png"
|
437 |
-
# # pil_image.save(tmp_file)
|
438 |
-
# # answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
439 |
-
|
440 |
-
# answer = process_document(pil_image, question)["answer"]
|
441 |
-
|
442 |
-
# return {"answer": answer}
|
443 |
-
|
444 |
-
# except:
|
445 |
-
# e = sys.exc_info()[1]
|
446 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
447 |
-
|
448 |
-
|
449 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
450 |
async def image_search_local(
|
451 |
images_to_search: List[UploadFile], query_image: UploadFile = File(...), top_k: int = 5
|
@@ -540,8 +204,7 @@ async def image_search_pinecone(
|
|
540 |
query_image = Image.open(io.BytesIO(contents))
|
541 |
print("Indexing query image...")
|
542 |
query_image = enhance_image(query_image)
|
543 |
-
|
544 |
-
prompt_embedding = fclip.encode_images([query_image], batch_size=32)[0]
|
545 |
if INDEX_NAME not in pinecone.list_indexes():
|
546 |
return {"similar_images": [], "status": "No index found for images"}
|
547 |
|
@@ -625,10 +288,9 @@ async def image_search_pinecone(
|
|
625 |
ids.append(str(uuid.uuid1()).replace("-",""))
|
626 |
|
627 |
print("Encoding images to vectors...")
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
corpus_embeddings = fclip.encode_images(search_images, batch_size=32)[0]
|
632 |
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
|
633 |
index.upsert(
|
634 |
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
|
@@ -649,4 +311,4 @@ if __name__ == "__main__":
|
|
649 |
parser.add_argument("--port", default=8000, type=int, help="port number")
|
650 |
# parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
|
651 |
opt = parser.parse_args()
|
652 |
-
uvicorn.run(app, port=opt.port)
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
import base64
|
3 |
import io
|
|
|
7 |
import traceback
|
8 |
import uuid
|
9 |
from typing import List, Optional
|
10 |
+
|
|
|
11 |
import cv2
|
12 |
import numpy as np
|
13 |
import pandas as pd
|
|
|
18 |
import uvicorn
|
19 |
from dotenv import load_dotenv
|
20 |
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
|
21 |
+
from PIL import Image, ImageEnhance
|
22 |
from pydantic import BaseModel
|
23 |
from sentence_transformers import SentenceTransformer, util
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
load_dotenv()
|
26 |
pinecone.init(api_key=os.getenv("PINECONE_KEY"), environment=os.getenv("PINECONE_ENV"))
|
27 |
+
|
|
|
|
|
|
|
|
|
|
|
28 |
IMAGE_SIMILARITY_DEMO = "/find-similar-image/"
|
29 |
IMAGE_SIMILARITY_PINECONE_DEMO = "/find-similar-image-pinecone/"
|
30 |
INDEX_NAME = "imagesearch-demo"
|
31 |
INDEX_DIMENSION = 512
|
32 |
TMP_DIR = "tmp"
|
33 |
|
34 |
+
image_sim_model = SentenceTransformer("clip-ViT-B-32")
|
35 |
+
|
36 |
def enhance_image(pil_image):
|
37 |
# Convert PIL Image to OpenCV format
|
38 |
open_cv_image = np.array(pil_image)
|
|
|
74 |
return enhanced_pil_image
|
75 |
|
76 |
|
77 |
+
print("checking pinecone Index")
|
78 |
if INDEX_NAME not in pinecone.list_indexes():
|
79 |
+
# delete the current index and create the new index if it does not exist
|
80 |
+
for delete_index in pinecone.list_indexes():
|
81 |
+
print(f"Deleting exitsing pinecone Index : {delete_index}")
|
82 |
+
|
83 |
+
pinecone.delete_index(delete_index)
|
84 |
+
print(f"Creating new pinecone Index : {INDEX_NAME}")
|
85 |
+
pinecone.create_index(INDEX_NAME, dimension=INDEX_DIMENSION, metric="cosine")
|
86 |
|
87 |
print("Connecting to Pinecone Index")
|
88 |
index = pinecone.Index(INDEX_NAME)
|
89 |
|
|
|
90 |
|
91 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
92 |
|
93 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
|
|
|
|
94 |
|
|
|
|
|
|
|
|
|
95 |
|
96 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
97 |
|
98 |
|
99 |
os.makedirs(TMP_DIR, exist_ok=True)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
102 |
|
103 |
+
|
104 |
+
app = FastAPI(title="CV Demos")
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
# define response
|
|
|
110 |
return {"error": f"Use GET {IMAGE_SIMILARITY_PINECONE_DEMO} instead of the root route!"}
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
@app.post(IMAGE_SIMILARITY_DEMO)
|
114 |
async def image_search_local(
|
115 |
images_to_search: List[UploadFile], query_image: UploadFile = File(...), top_k: int = 5
|
|
|
204 |
query_image = Image.open(io.BytesIO(contents))
|
205 |
print("Indexing query image...")
|
206 |
query_image = enhance_image(query_image)
|
207 |
+
prompt_embedding = image_sim_model.encode(query_image, convert_to_tensor=True).tolist()
|
|
|
208 |
if INDEX_NAME not in pinecone.list_indexes():
|
209 |
return {"similar_images": [], "status": "No index found for images"}
|
210 |
|
|
|
288 |
ids.append(str(uuid.uuid1()).replace("-",""))
|
289 |
|
290 |
print("Encoding images to vectors...")
|
291 |
+
corpus_embeddings = image_sim_model.encode(
|
292 |
+
search_images, convert_to_tensor=True, show_progress_bar=True
|
293 |
+
).tolist()
|
|
|
294 |
print(f"Indexing images to pinecone Index : {INDEX_NAME}")
|
295 |
index.upsert(
|
296 |
vectors=list(zip(ids, corpus_embeddings, meta_datas)), namespace=namespace
|
|
|
311 |
parser.add_argument("--port", default=8000, type=int, help="port number")
|
312 |
# parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
|
313 |
opt = parser.parse_args()
|
314 |
+
uvicorn.run(app, port=opt.port)a
|