Spaces:
Sleeping
Sleeping
import random | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import sys | |
import os | |
import pickle | |
SERVER_FILE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
NUTRITION_MODEL_PATH = os.path.join( | |
SERVER_FILE_DIR, *"../resources/models/nutrition_model.pkl".split("/") | |
) | |
class NutritionModel: | |
def generate_plan(self,calories): | |
the_model = self.nutrition_model | |
lunch_attr = {"Calories":calories*0.5, | |
"FatContent":random.uniform(19, 97), | |
"SaturatedFatContent":random.uniform(6, 12), | |
"CholesterolContent": random.uniform(77, 299), | |
"SodiumContent":random.uniform(565, 2299), | |
"CarbohydrateContent":random.uniform(28, 317), | |
"FiberContent": random.uniform(2, 38), | |
"SugarContent": random.uniform(0, 38), | |
"ProteinContent":random.uniform(20, 123)} | |
lunch_df = pd.DataFrame(lunch_attr, index=[0]) | |
breakfast_attr = {"Calories":calories*0.30, | |
"FatContent":random.uniform(8.7, 20), | |
"SaturatedFatContent":random.uniform(1.7, 3.7), | |
"CholesterolContent": random.uniform(0, 63), | |
"SodiumContent":random.uniform(163, 650), | |
"CarbohydrateContent":random.uniform(23, 56), | |
"FiberContent": random.uniform(2.6, 8), | |
"SugarContent": random.uniform(3.5, 13), | |
"ProteinContent":random.uniform(6, 25)} | |
breakfast_df = pd.DataFrame(breakfast_attr, index=[0]) | |
dinner_attr = {"Calories":calories*0.30, | |
"FatContent":random.uniform(15, 33), | |
"SaturatedFatContent":random.uniform(6, 8), | |
"CholesterolContent": random.uniform(22, 86), | |
"SodiumContent":random.uniform(265, 775), | |
"CarbohydrateContent":random.uniform(14, 44), | |
"FiberContent": random.uniform(101, 110), | |
"SugarContent": random.uniform(3, 13), | |
"ProteinContent":random.uniform(11, 25)} | |
dinner_df = pd.DataFrame(dinner_attr, index=[0]) | |
snack_attr = {"Calories":random.uniform(90, 190), | |
"FatContent":random.uniform(1.7, 10), | |
"SaturatedFatContent":random.uniform(0.7, 3), | |
"CholesterolContent": random.uniform(2, 16), | |
"SodiumContent":random.uniform(47, 200), | |
"CarbohydrateContent":random.uniform(10, 31), | |
"FiberContent": random.uniform(0.4, 2.5), | |
"SugarContent": random.uniform(5.7, 21), | |
"ProteinContent":random.uniform(3, 20)} | |
snack_df = pd.DataFrame(snack_attr, index=[0]) | |
drinks_attr = {"Calories":random.uniform(60, 125), | |
"FatContent":random.uniform(0.2, 0.6), | |
"SaturatedFatContent":random.uniform(0, 0.1), | |
"CholesterolContent": random.uniform(0, 0.1), | |
"SodiumContent":random.uniform(3.5, 51), | |
"CarbohydrateContent":random.uniform(14, 30), | |
"FiberContent": random.uniform(0.2, 3.6), | |
"SugarContent": random.uniform(109, 122), | |
"ProteinContent":random.uniform(0.4, 6)} | |
drink_df = pd.DataFrame(drinks_attr, index=[0]) | |
lunch = the_model.transform(lunch_df) | |
breakfast = the_model.transform(breakfast_df) | |
dinner = the_model.transform(dinner_df) | |
snack = the_model.transform(snack_df) | |
drink = the_model.transform(drink_df) | |
meals = np.concatenate((breakfast, lunch, dinner, snack, drink), axis=0) | |
meals = np.transpose(meals) | |
return meals | |
def load(self): | |
with open(NUTRITION_MODEL_PATH, "rb") as f: | |
self.nutrition_model = pickle.load(f) | |