Spaces:
Running
Running
Commit
·
d471da2
1
Parent(s):
b1140b3
remove models server code
Browse files- .env.example +2 -3
- Dockerfile +2 -7
- models-server/models/fitness_model.py +0 -259
- models-server/models/nutrition_model.py +0 -96
- models-server/resources/models/fitness_model.pkl +0 -3
- models-server/resources/models/nutrition_model.pkl +0 -3
- models-server/server.py +0 -62
- requirements.txt +0 -7
- run-script.sh +0 -4
- src/configs/config.ts +1 -1
.env.example
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
PORT =
|
2 |
-
|
3 |
DB_URI =
|
4 |
-
|
5 |
JWT_SECRET =
|
6 |
-
JWT_EXPIRES_IN =
|
|
|
|
1 |
PORT =
|
|
|
2 |
DB_URI =
|
|
|
3 |
JWT_SECRET =
|
4 |
+
JWT_EXPIRES_IN =
|
5 |
+
MODELS_SERVER_URL=
|
Dockerfile
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
# Use the official Node.js v18 image as the base image
|
2 |
FROM node:18
|
3 |
|
4 |
-
# install python3 and pip
|
5 |
-
RUN apt-get update && apt-get install -y python3 python3-pip
|
6 |
-
|
7 |
# Set the working directory inside the container
|
8 |
WORKDIR /app
|
9 |
|
@@ -27,12 +24,10 @@ ENV PORT=7860
|
|
27 |
ARG JWT_SECRET
|
28 |
ARG JWT_EXPIRES_IN
|
29 |
ARG DB_URI
|
30 |
-
|
31 |
-
# install python dependencies
|
32 |
-
RUN pip3 install -r requirements.txt --break-system-packages
|
33 |
|
34 |
# Expose the port on which your application will run
|
35 |
EXPOSE $PORT
|
36 |
|
37 |
# Command to run the application
|
38 |
-
CMD ["
|
|
|
1 |
# Use the official Node.js v18 image as the base image
|
2 |
FROM node:18
|
3 |
|
|
|
|
|
|
|
4 |
# Set the working directory inside the container
|
5 |
WORKDIR /app
|
6 |
|
|
|
24 |
ARG JWT_SECRET
|
25 |
ARG JWT_EXPIRES_IN
|
26 |
ARG DB_URI
|
27 |
+
ARG MODELS_SERVER_URL
|
|
|
|
|
28 |
|
29 |
# Expose the port on which your application will run
|
30 |
EXPOSE $PORT
|
31 |
|
32 |
# Command to run the application
|
33 |
+
CMD ["npm", "run", "start:dev"]
|
models-server/models/fitness_model.py
DELETED
@@ -1,259 +0,0 @@
|
|
1 |
-
from sklearn.preprocessing import OneHotEncoder
|
2 |
-
import random
|
3 |
-
import pandas as pd
|
4 |
-
import os
|
5 |
-
import pickle
|
6 |
-
|
7 |
-
SERVER_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
8 |
-
FITNESS_MODEL_PATH = os.path.join(
|
9 |
-
SERVER_FILE_DIR, *"../resources/models/fitness_model.pkl".split("/")
|
10 |
-
)
|
11 |
-
|
12 |
-
|
13 |
-
class FitnessModel:
|
14 |
-
def __init__(self, excercise_path, kmeans_path, plan_classifier_path):
|
15 |
-
self.data = pd.read_csv(excercise_path)
|
16 |
-
self.kmeans = None
|
17 |
-
self.plan_classifier = None
|
18 |
-
self.encoder = None
|
19 |
-
self.cluster_data = {}
|
20 |
-
self.X_train_cols = [
|
21 |
-
"level_Advanced",
|
22 |
-
"level_Beginner",
|
23 |
-
"level_Intermediate",
|
24 |
-
"goal_ Get Fitter",
|
25 |
-
"goal_ Lose Weight",
|
26 |
-
"goal_Gain Muscle",
|
27 |
-
"goal_Get Fitter",
|
28 |
-
"goal_Increase Endurance",
|
29 |
-
"goal_Increase Strength",
|
30 |
-
"goal_Sports Performance",
|
31 |
-
"gender_Female",
|
32 |
-
"gender_Male",
|
33 |
-
"gender_Male & Female",
|
34 |
-
]
|
35 |
-
|
36 |
-
# Load kmeans model
|
37 |
-
with open(kmeans_path, "rb") as f:
|
38 |
-
self.kmeans = pickle.load(f)
|
39 |
-
|
40 |
-
# Load plan classifier model
|
41 |
-
with open(plan_classifier_path, "rb") as f:
|
42 |
-
self.plan_classifier = pickle.load(f)
|
43 |
-
|
44 |
-
# Iterate over each cluster label
|
45 |
-
for cluster_label in range(90):
|
46 |
-
# Filter the dataset to get data for the current cluster
|
47 |
-
cluster_subset = self.data[self.data["cluster"] == cluster_label]
|
48 |
-
|
49 |
-
# Add the cluster data to the dictionary
|
50 |
-
self.cluster_data[cluster_label] = cluster_subset
|
51 |
-
|
52 |
-
features = self.data[["Level", "goal", "bodyPart"]]
|
53 |
-
|
54 |
-
# Perform one-hot encoding for categorical features
|
55 |
-
self.encoder = OneHotEncoder(sparse=False)
|
56 |
-
encoded_features = self.encoder.fit_transform(features)
|
57 |
-
|
58 |
-
def choose_plan(self, level, goal, gender):
|
59 |
-
global plan_classifier
|
60 |
-
# Convert input into a DataFrame
|
61 |
-
input_data = pd.DataFrame(
|
62 |
-
{"level": [level], "goal": [goal], "gender": [gender]}
|
63 |
-
)
|
64 |
-
|
65 |
-
# One-hot encode the input data
|
66 |
-
input_encoded = pd.get_dummies(input_data, columns=["level", "goal", "gender"])
|
67 |
-
|
68 |
-
# Ensure that input has the same columns as the model was trained on
|
69 |
-
# This is necessary in case some categories are missing in the input
|
70 |
-
missing_cols = set(self.X_train_cols) - set(input_encoded.columns)
|
71 |
-
for col in missing_cols:
|
72 |
-
input_encoded[col] = 0
|
73 |
-
|
74 |
-
# Reorder columns to match the order of columns in X_train
|
75 |
-
input_encoded = input_encoded[self.X_train_cols]
|
76 |
-
|
77 |
-
# Make prediction for the given input using the trained model
|
78 |
-
prediction = self.plan_classifier.predict(input_encoded)
|
79 |
-
|
80 |
-
# Convert each string in the list to a list of strings
|
81 |
-
daily_activities_lists = [day.split(", ") for day in prediction[0]]
|
82 |
-
|
83 |
-
return daily_activities_lists
|
84 |
-
|
85 |
-
def get_daily_recommendation(self, home_or_gym, level, goal, bodyParts, equipments):
|
86 |
-
if goal in ["Lose Weight", "Get Fitter"]:
|
87 |
-
goal = "Get Fitter & Lose Weight"
|
88 |
-
daily_recommendations = []
|
89 |
-
|
90 |
-
bodyParts = [bp for bp in bodyParts if "-" not in bp]
|
91 |
-
# Repeat elements in bodyParts until it reaches a size of 6
|
92 |
-
while len(bodyParts) < 6:
|
93 |
-
bodyParts += bodyParts
|
94 |
-
|
95 |
-
# Limit bodyParts to size 6
|
96 |
-
bodyParts = bodyParts[:6]
|
97 |
-
|
98 |
-
for bodyPart in bodyParts:
|
99 |
-
# Predict cluster for the specified combination of goal, level, and body part
|
100 |
-
input_data = [[level, goal, bodyPart]]
|
101 |
-
predicted_cluster = self.kmeans.predict(self.encoder.transform(input_data))[
|
102 |
-
0
|
103 |
-
]
|
104 |
-
print(predicted_cluster)
|
105 |
-
# Get data for the predicted cluster
|
106 |
-
cluster_subset = self.cluster_data[predicted_cluster]
|
107 |
-
|
108 |
-
# Filter data based on location (home or gym)
|
109 |
-
if home_or_gym == 0:
|
110 |
-
cluster_subset = cluster_subset[
|
111 |
-
~cluster_subset["equipment"].isin(equipments)
|
112 |
-
]
|
113 |
-
|
114 |
-
# Randomly select one exercise from the cluster if any left after equipment filtering
|
115 |
-
if not cluster_subset.empty:
|
116 |
-
selected_exercise = random.choice(
|
117 |
-
cluster_subset.to_dict(orient="records")
|
118 |
-
)
|
119 |
-
daily_recommendations.append(selected_exercise)
|
120 |
-
|
121 |
-
# Remove duplicates from the list
|
122 |
-
unique_recommendations = []
|
123 |
-
seen_names = set()
|
124 |
-
for exercise in daily_recommendations:
|
125 |
-
if exercise["name"] not in seen_names:
|
126 |
-
unique_recommendations.append(exercise)
|
127 |
-
seen_names.add(exercise["name"])
|
128 |
-
|
129 |
-
return unique_recommendations
|
130 |
-
|
131 |
-
def get_gender_adjustment(self, gender):
|
132 |
-
return 1.0 if gender == "Male" else 0.7
|
133 |
-
|
134 |
-
def get_age_adjustment(self, age):
|
135 |
-
if age < 30:
|
136 |
-
return 1.0
|
137 |
-
elif 30 <= age < 50:
|
138 |
-
return 0.5
|
139 |
-
else:
|
140 |
-
return 0.1
|
141 |
-
|
142 |
-
def get_level_adjustment(self, level):
|
143 |
-
if level == "Beginner":
|
144 |
-
return 0.8
|
145 |
-
elif level == "Intermediate":
|
146 |
-
return 1.0
|
147 |
-
elif level == "Advanced":
|
148 |
-
return 1.2
|
149 |
-
|
150 |
-
def get_body_part_adjustment(self, body_part):
|
151 |
-
body_parts = {
|
152 |
-
"chest": 1,
|
153 |
-
"shoulders": 0.8,
|
154 |
-
"waist": 0.6,
|
155 |
-
"upper legs": 0.7,
|
156 |
-
"back": 0.9,
|
157 |
-
"lower legs": 0.5,
|
158 |
-
"upper arms": 0.8,
|
159 |
-
"cardio": 0.7,
|
160 |
-
"lower arms": 0.6,
|
161 |
-
"neck": 0.5,
|
162 |
-
}
|
163 |
-
return body_parts.get(body_part, 0)
|
164 |
-
|
165 |
-
def adjust_workout(self, gender, age, feedback, body_part, level, old_weight):
|
166 |
-
gender_adjustment = self.get_gender_adjustment(gender)
|
167 |
-
age_adjustment = self.get_age_adjustment(age)
|
168 |
-
level_adjustment = self.get_level_adjustment(level)
|
169 |
-
body_part_adjustment = self.get_body_part_adjustment(body_part)
|
170 |
-
|
171 |
-
increasing_factor_of_weight = (
|
172 |
-
age_adjustment
|
173 |
-
* body_part_adjustment
|
174 |
-
* gender_adjustment
|
175 |
-
* level_adjustment
|
176 |
-
* 0.3
|
177 |
-
)
|
178 |
-
|
179 |
-
if not feedback:
|
180 |
-
increasing_factor_of_weight = (1 - increasing_factor_of_weight) * -0.1
|
181 |
-
|
182 |
-
new_weight = old_weight + increasing_factor_of_weight * old_weight
|
183 |
-
|
184 |
-
return new_weight
|
185 |
-
|
186 |
-
def calculate_new_repetition(self, level, goal):
|
187 |
-
if goal in ["Lose Weight", "Get Fitter"]:
|
188 |
-
if level == "Beginner":
|
189 |
-
return 15
|
190 |
-
elif level == "Intermediate":
|
191 |
-
return 12
|
192 |
-
elif level == "Expert":
|
193 |
-
return 10
|
194 |
-
elif goal == "Gain Muscle":
|
195 |
-
if level == "Beginner":
|
196 |
-
return 10
|
197 |
-
elif level == "Intermediate":
|
198 |
-
return 8
|
199 |
-
elif level == "Advanced":
|
200 |
-
return 6
|
201 |
-
|
202 |
-
def calculate_new_duration(self, level):
|
203 |
-
|
204 |
-
if level == "Beginner":
|
205 |
-
return 20
|
206 |
-
elif level == "Intermediate":
|
207 |
-
return 50
|
208 |
-
elif level == "Advanced":
|
209 |
-
return 80
|
210 |
-
|
211 |
-
def predict(
|
212 |
-
self, home_or_gym, level, goal, gender, age, feedback, old_weight, equipments
|
213 |
-
):
|
214 |
-
|
215 |
-
plan = self.choose_plan(level, goal, gender)
|
216 |
-
print(plan)
|
217 |
-
|
218 |
-
while len(plan) < 30:
|
219 |
-
plan.extend(plan)
|
220 |
-
plan = plan[:30]
|
221 |
-
|
222 |
-
all_recommendations = []
|
223 |
-
for day_body_parts in plan:
|
224 |
-
daily_exercises = self.get_daily_recommendation(
|
225 |
-
home_or_gym, level, goal, day_body_parts, equipments
|
226 |
-
)
|
227 |
-
daily_recommendations = []
|
228 |
-
|
229 |
-
for exercise in daily_exercises:
|
230 |
-
weights = self.adjust_workout(
|
231 |
-
gender, age, feedback, exercise["bodyPart"], level, old_weight
|
232 |
-
)
|
233 |
-
repetitions = self.calculate_new_repetition(level, goal)
|
234 |
-
duration = self.calculate_new_duration(level)
|
235 |
-
weights_or_duration = (
|
236 |
-
weights if exercise["type"] == "weight" else duration
|
237 |
-
)
|
238 |
-
exercise_recommendations = {
|
239 |
-
"name": exercise["name"],
|
240 |
-
"type": exercise["type"],
|
241 |
-
"equipment": exercise["equipment"],
|
242 |
-
"bodyPart": exercise["bodyPart"],
|
243 |
-
"target": exercise["target"],
|
244 |
-
"weights_or_duration": weights_or_duration,
|
245 |
-
"sets": exercise["sets"],
|
246 |
-
"repetitions": repetitions,
|
247 |
-
}
|
248 |
-
daily_recommendations.append(exercise_recommendations)
|
249 |
-
all_recommendations.append(daily_recommendations)
|
250 |
-
|
251 |
-
return all_recommendations # Trim to ensure exactly 30 elements
|
252 |
-
|
253 |
-
@classmethod
|
254 |
-
def load(cls):
|
255 |
-
with open(FITNESS_MODEL_PATH, "rb") as f:
|
256 |
-
print(f)
|
257 |
-
fitness_model = pickle.load(f)
|
258 |
-
|
259 |
-
return fitness_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models-server/models/nutrition_model.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import pickle
|
5 |
-
import os
|
6 |
-
|
7 |
-
SERVER_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
8 |
-
NUTRITION_MODEL_PATH = os.path.join(SERVER_FILE_DIR, "../resources/models/nutrition_model.pkl")
|
9 |
-
MEALS_JSON_PATH = os.path.join(SERVER_FILE_DIR, "../../src/resources/meals.json")
|
10 |
-
|
11 |
-
# Ensure the file exists
|
12 |
-
if not os.path.exists(MEALS_JSON_PATH):
|
13 |
-
raise FileNotFoundError(f"File {MEALS_JSON_PATH} does not exist")
|
14 |
-
|
15 |
-
df = pd.read_json(MEALS_JSON_PATH)
|
16 |
-
|
17 |
-
class NutritionModel:
|
18 |
-
def __init__(self):
|
19 |
-
self.load()
|
20 |
-
|
21 |
-
def generate_plan(self, calories):
|
22 |
-
lunch_attr = {
|
23 |
-
"Calories": calories * 0.5,
|
24 |
-
"FatContent": random.uniform(19, 97),
|
25 |
-
"SaturatedFatContent": random.uniform(6, 12),
|
26 |
-
"CholesterolContent": random.uniform(77, 299),
|
27 |
-
"SodiumContent": random.uniform(565, 2299),
|
28 |
-
"CarbohydrateContent": random.uniform(28, 317),
|
29 |
-
"FiberContent": random.uniform(2, 38),
|
30 |
-
"SugarContent": random.uniform(0, 38),
|
31 |
-
"ProteinContent": random.uniform(20, 123)
|
32 |
-
}
|
33 |
-
|
34 |
-
lunch_df = pd.DataFrame(lunch_attr, index=[0])
|
35 |
-
|
36 |
-
breakfast_attr = {
|
37 |
-
"Calories": calories * 0.30,
|
38 |
-
"FatContent": random.uniform(8.7, 20),
|
39 |
-
"SaturatedFatContent": random.uniform(1.7, 3.7),
|
40 |
-
"CholesterolContent": random.uniform(0, 63),
|
41 |
-
"SodiumContent": random.uniform(163, 650),
|
42 |
-
"CarbohydrateContent": random.uniform(23, 56),
|
43 |
-
"FiberContent": random.uniform(2.6, 8),
|
44 |
-
"SugarContent": random.uniform(3.5, 13),
|
45 |
-
"ProteinContent": random.uniform(6, 25)
|
46 |
-
}
|
47 |
-
|
48 |
-
breakfast_df = pd.DataFrame(breakfast_attr, index=[0])
|
49 |
-
|
50 |
-
dinner_attr = {
|
51 |
-
"Calories": calories * 0.30,
|
52 |
-
"FatContent": random.uniform(8.7, 20),
|
53 |
-
"SaturatedFatContent": random.uniform(1.7, 3.7),
|
54 |
-
"CholesterolContent": random.uniform(0, 63),
|
55 |
-
"SodiumContent": random.uniform(163, 650),
|
56 |
-
"CarbohydrateContent": random.uniform(23, 56),
|
57 |
-
"FiberContent": random.uniform(2.6, 8),
|
58 |
-
"SugarContent": random.uniform(3.5, 13),
|
59 |
-
"ProteinContent": random.uniform(6, 25)
|
60 |
-
}
|
61 |
-
|
62 |
-
dinner_df = pd.DataFrame(dinner_attr, index=[0])
|
63 |
-
|
64 |
-
snack_attr = {
|
65 |
-
"Calories": random.uniform(90, 190),
|
66 |
-
"FatContent": random.uniform(1.7, 10),
|
67 |
-
"SaturatedFatContent": random.uniform(0.7, 3),
|
68 |
-
"CholesterolContent": random.uniform(2, 16),
|
69 |
-
"SodiumContent": random.uniform(47, 200),
|
70 |
-
"CarbohydrateContent": random.uniform(10, 31),
|
71 |
-
"FiberContent": random.uniform(0.4, 2.5),
|
72 |
-
"SugarContent": random.uniform(5.7, 21),
|
73 |
-
"ProteinContent": random.uniform(3, 20)
|
74 |
-
}
|
75 |
-
|
76 |
-
snack_df = pd.DataFrame(snack_attr, index=[0])
|
77 |
-
|
78 |
-
lunch = self.nutrition_model.transform(lunch_df)
|
79 |
-
breakfast = self.nutrition_model.transform(breakfast_df)
|
80 |
-
dinner = self.nutrition_model.transform(dinner_df)
|
81 |
-
snack = self.nutrition_model.transform(snack_df)
|
82 |
-
|
83 |
-
meals = np.concatenate((breakfast, lunch, dinner, snack), axis=0)
|
84 |
-
meals = np.transpose(meals)
|
85 |
-
|
86 |
-
days = []
|
87 |
-
for i in range(7):
|
88 |
-
day_meals = df.iloc[meals[i]].to_dict(orient="records")
|
89 |
-
days.append(day_meals)
|
90 |
-
|
91 |
-
return days
|
92 |
-
|
93 |
-
def load(self):
|
94 |
-
with open(NUTRITION_MODEL_PATH, "rb") as f:
|
95 |
-
self.nutrition_model = pickle.load(f)
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models-server/resources/models/fitness_model.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:665d34c71c506fa1cdbd8d74b54f6ca84f1b9f5a397a6bb90d608cc699f2a61d
|
3 |
-
size 95457799
|
|
|
|
|
|
|
|
models-server/resources/models/nutrition_model.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9cd0dc84cc9dcc0c985725e8d5cda8d9f9b0571c6c3219bdef2309f177b46ae1
|
3 |
-
size 258480
|
|
|
|
|
|
|
|
models-server/server.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
import os
|
4 |
-
from models.fitness_model import FitnessModel
|
5 |
-
from models.nutrition_model import NutritionModel
|
6 |
-
|
7 |
-
load_dotenv()
|
8 |
-
|
9 |
-
|
10 |
-
HOST = os.getenv("MODELS_HOST") or "127.0.0.1"
|
11 |
-
PORT = os.getenv("MODELS_PORT") or "3030"
|
12 |
-
|
13 |
-
|
14 |
-
fitness_model = FitnessModel.load()
|
15 |
-
nutrition_model = NutritionModel()
|
16 |
-
nutrition_model.load()
|
17 |
-
app = Flask("model-server")
|
18 |
-
|
19 |
-
|
20 |
-
@app.get("/")
|
21 |
-
def health():
|
22 |
-
return "I'm alive!!"
|
23 |
-
|
24 |
-
|
25 |
-
@app.post("/fitness")
|
26 |
-
def fitness_predict():
|
27 |
-
paramNames = [
|
28 |
-
"home_or_gym",
|
29 |
-
"level",
|
30 |
-
"goal",
|
31 |
-
"gender",
|
32 |
-
"age",
|
33 |
-
"feedback",
|
34 |
-
"old_weight",
|
35 |
-
"equipments",
|
36 |
-
]
|
37 |
-
|
38 |
-
params = {}
|
39 |
-
for paramName in paramNames:
|
40 |
-
value = request.json.get(paramName)
|
41 |
-
if value is None:
|
42 |
-
return jsonify({"error": f"{paramName} is missing"}), 400
|
43 |
-
params[paramName] = value
|
44 |
-
|
45 |
-
return jsonify({"result": fitness_model.predict(**params)})
|
46 |
-
|
47 |
-
|
48 |
-
@app.post("/nutrition")
|
49 |
-
def nutrition_predict():
|
50 |
-
paramNames = ["calories"]
|
51 |
-
|
52 |
-
params = {}
|
53 |
-
for paramName in paramNames:
|
54 |
-
value = request.json.get(paramName)
|
55 |
-
if value is None:
|
56 |
-
return jsonify({"error": f"{paramName} is missing"}), 400
|
57 |
-
params[paramName] = value
|
58 |
-
return jsonify({"result": nutrition_model.generate_plan(**params)})
|
59 |
-
|
60 |
-
|
61 |
-
if __name__ == "__main__":
|
62 |
-
app.run(host=HOST, port=PORT, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
Flask>=3.0.0,<4.0.0
|
2 |
-
anakin-language-server>=1.0.0,<2.0.0
|
3 |
-
python-dotenv>=1.0.0,<2.0.0
|
4 |
-
scikit-learn>=1.2.0,<1.3.0
|
5 |
-
black>=24.0.0,<25.0.0
|
6 |
-
pandas>=2.2.0,<2.3.0
|
7 |
-
python-dotenv>=1.0.0,<2.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run-script.sh
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
#!/bin/sh
|
2 |
-
|
3 |
-
python models-server/server.py &
|
4 |
-
npm run start:dev
|
|
|
|
|
|
|
|
|
|
src/configs/config.ts
CHANGED
@@ -29,5 +29,5 @@ export const config: Config = {
|
|
29 |
expiresIn: Env.get("JWT_EXPIRES_IN").toString(),
|
30 |
},
|
31 |
saltRounds: Env.get("SALT_ROUNDS", 5).toNumber(),
|
32 |
-
modelsServerUrl:
|
33 |
};
|
|
|
29 |
expiresIn: Env.get("JWT_EXPIRES_IN").toString(),
|
30 |
},
|
31 |
saltRounds: Env.get("SALT_ROUNDS", 5).toNumber(),
|
32 |
+
modelsServerUrl: Env.get("MODELS_SERVER_URL").toString(),
|
33 |
};
|