Spaces:
Sleeping
Sleeping
File size: 9,020 Bytes
2a021c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from sklearn.preprocessing import OneHotEncoder
import random
import pandas as pd
import os
import pickle
SERVER_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
FITNESS_MODEL_PATH = os.path.join(
SERVER_FILE_DIR, *"../resources/models/fitness_model.pkl".split("/")
)
class FitnessModel:
def __init__(self, excercise_path, kmeans_path, plan_classifier_path):
self.data = pd.read_csv(excercise_path)
self.kmeans = None
self.plan_classifier = None
self.encoder = None
self.cluster_data = {}
self.X_train_cols = [
"level_Advanced",
"level_Beginner",
"level_Intermediate",
"goal_ Get Fitter",
"goal_ Lose Weight",
"goal_Gain Muscle",
"goal_Get Fitter",
"goal_Increase Endurance",
"goal_Increase Strength",
"goal_Sports Performance",
"gender_Female",
"gender_Male",
"gender_Male & Female",
]
# Load kmeans model
with open(kmeans_path, "rb") as f:
self.kmeans = pickle.load(f)
# Load plan classifier model
with open(plan_classifier_path, "rb") as f:
self.plan_classifier = pickle.load(f)
# Iterate over each cluster label
for cluster_label in range(90):
# Filter the dataset to get data for the current cluster
cluster_subset = self.data[self.data["cluster"] == cluster_label]
# Add the cluster data to the dictionary
self.cluster_data[cluster_label] = cluster_subset
features = self.data[["Level", "goal", "bodyPart"]]
# Perform one-hot encoding for categorical features
self.encoder = OneHotEncoder(sparse=False)
encoded_features = self.encoder.fit_transform(features)
def choose_plan(self, level, goal, gender):
global plan_classifier
# Convert input into a DataFrame
input_data = pd.DataFrame(
{"level": [level], "goal": [goal], "gender": [gender]}
)
# One-hot encode the input data
input_encoded = pd.get_dummies(input_data, columns=["level", "goal", "gender"])
# Ensure that input has the same columns as the model was trained on
# This is necessary in case some categories are missing in the input
missing_cols = set(self.X_train_cols) - set(input_encoded.columns)
for col in missing_cols:
input_encoded[col] = 0
# Reorder columns to match the order of columns in X_train
input_encoded = input_encoded[self.X_train_cols]
# Make prediction for the given input using the trained model
prediction = self.plan_classifier.predict(input_encoded)
# Convert each string in the list to a list of strings
daily_activities_lists = [day.split(", ") for day in prediction[0]]
return daily_activities_lists
def get_daily_recommendation(self, home_or_gym, level, goal, bodyParts, equipments):
if goal in ["Lose Weight", "Get Fitter"]:
goal = "Get Fitter & Lose Weight"
daily_recommendations = []
bodyParts = [bp for bp in bodyParts if "-" not in bp]
# Repeat elements in bodyParts until it reaches a size of 6
while len(bodyParts) < 6:
bodyParts += bodyParts
# Limit bodyParts to size 6
bodyParts = bodyParts[:6]
for bodyPart in bodyParts:
# Predict cluster for the specified combination of goal, level, and body part
input_data = [[level, goal, bodyPart]]
predicted_cluster = self.kmeans.predict(self.encoder.transform(input_data))[
0
]
print(predicted_cluster)
# Get data for the predicted cluster
cluster_subset = self.cluster_data[predicted_cluster]
# Filter data based on location (home or gym)
if home_or_gym == 0:
cluster_subset = cluster_subset[
~cluster_subset["equipment"].isin(equipments)
]
# Randomly select one exercise from the cluster if any left after equipment filtering
if not cluster_subset.empty:
selected_exercise = random.choice(
cluster_subset.to_dict(orient="records")
)
daily_recommendations.append(selected_exercise)
# Remove duplicates from the list
unique_recommendations = []
seen_names = set()
for exercise in daily_recommendations:
if exercise["name"] not in seen_names:
unique_recommendations.append(exercise)
seen_names.add(exercise["name"])
return unique_recommendations
def get_gender_adjustment(self, gender):
return 1.0 if gender == "Male" else 0.7
def get_age_adjustment(self, age):
if age < 30:
return 1.0
elif 30 <= age < 50:
return 0.5
else:
return 0.1
def get_level_adjustment(self, level):
if level == "Beginner":
return 0.8
elif level == "Intermediate":
return 1.0
elif level == "Advanced":
return 1.2
def get_body_part_adjustment(self, body_part):
body_parts = {
"chest": 1,
"shoulders": 0.8,
"waist": 0.6,
"upper legs": 0.7,
"back": 0.9,
"lower legs": 0.5,
"upper arms": 0.8,
"cardio": 0.7,
"lower arms": 0.6,
"neck": 0.5,
}
return body_parts.get(body_part, 0)
def adjust_workout(self, gender, age, feedback, body_part, level, old_weight):
gender_adjustment = self.get_gender_adjustment(gender)
age_adjustment = self.get_age_adjustment(age)
level_adjustment = self.get_level_adjustment(level)
body_part_adjustment = self.get_body_part_adjustment(body_part)
increasing_factor_of_weight = (
age_adjustment
* body_part_adjustment
* gender_adjustment
* level_adjustment
* 0.3
)
if not feedback:
increasing_factor_of_weight = (1 - increasing_factor_of_weight) * -0.1
new_weight = old_weight + increasing_factor_of_weight * old_weight
return new_weight
def calculate_new_repetition(self, level, goal):
if goal in ["Lose Weight", "Get Fitter"]:
if level == "Beginner":
return 15
elif level == "Intermediate":
return 12
elif level == "Expert":
return 10
elif goal == "Gain Muscle":
if level == "Beginner":
return 10
elif level == "Intermediate":
return 8
elif level == "Advanced":
return 6
def calculate_new_duration(self, level):
if level == "Beginner":
return 20
elif level == "Intermediate":
return 50
elif level == "Advanced":
return 80
def predict(
self, home_or_gym, level, goal, gender, age, feedback, old_weight, equipments
):
plan = self.choose_plan(level, goal, gender)
print(plan)
while len(plan) < 30:
plan.extend(plan)
plan = plan[:30]
all_recommendations = []
for day_body_parts in plan:
daily_exercises = self.get_daily_recommendation(
home_or_gym, level, goal, day_body_parts, equipments
)
daily_recommendations = []
for exercise in daily_exercises:
weights = self.adjust_workout(
gender, age, feedback, exercise["bodyPart"], level, old_weight
)
repetitions = self.calculate_new_repetition(level, goal)
duration = self.calculate_new_duration(level)
weights_or_duration = (
weights if exercise["type"] == "weight" else duration
)
exercise_recommendations = {
"name": exercise["name"],
"type": exercise["type"],
"equipment": exercise["equipment"],
"bodyPart": exercise["bodyPart"],
"target": exercise["target"],
"weights_or_duration": weights_or_duration,
"sets": exercise["sets"],
"repetitions": repetitions,
}
daily_recommendations.append(exercise_recommendations)
all_recommendations.append(daily_recommendations)
return all_recommendations # Trim to ensure exactly 30 elements
@classmethod
def load(cls):
with open(FITNESS_MODEL_PATH, "rb") as f:
print(f)
fitness_model = pickle.load(f)
return fitness_model
|