File size: 9,020 Bytes
2a021c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from sklearn.preprocessing import OneHotEncoder
import random
import pandas as pd
import os
import pickle

SERVER_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
FITNESS_MODEL_PATH = os.path.join(
    SERVER_FILE_DIR, *"../resources/models/fitness_model.pkl".split("/")
)


class FitnessModel:
    def __init__(self, excercise_path, kmeans_path, plan_classifier_path):
        self.data = pd.read_csv(excercise_path)
        self.kmeans = None
        self.plan_classifier = None
        self.encoder = None
        self.cluster_data = {}
        self.X_train_cols = [
            "level_Advanced",
            "level_Beginner",
            "level_Intermediate",
            "goal_ Get Fitter",
            "goal_ Lose Weight",
            "goal_Gain Muscle",
            "goal_Get Fitter",
            "goal_Increase Endurance",
            "goal_Increase Strength",
            "goal_Sports Performance",
            "gender_Female",
            "gender_Male",
            "gender_Male & Female",
        ]

        # Load kmeans model
        with open(kmeans_path, "rb") as f:
            self.kmeans = pickle.load(f)

        # Load plan classifier model
        with open(plan_classifier_path, "rb") as f:
            self.plan_classifier = pickle.load(f)

        # Iterate over each cluster label
        for cluster_label in range(90):
            # Filter the dataset to get data for the current cluster
            cluster_subset = self.data[self.data["cluster"] == cluster_label]

            # Add the cluster data to the dictionary
            self.cluster_data[cluster_label] = cluster_subset

        features = self.data[["Level", "goal", "bodyPart"]]

        # Perform one-hot encoding for categorical features
        self.encoder = OneHotEncoder(sparse=False)
        encoded_features = self.encoder.fit_transform(features)

    def choose_plan(self, level, goal, gender):
        global plan_classifier
        # Convert input into a DataFrame
        input_data = pd.DataFrame(
            {"level": [level], "goal": [goal], "gender": [gender]}
        )

        # One-hot encode the input data
        input_encoded = pd.get_dummies(input_data, columns=["level", "goal", "gender"])

        # Ensure that input has the same columns as the model was trained on
        # This is necessary in case some categories are missing in the input
        missing_cols = set(self.X_train_cols) - set(input_encoded.columns)
        for col in missing_cols:
            input_encoded[col] = 0

        # Reorder columns to match the order of columns in X_train
        input_encoded = input_encoded[self.X_train_cols]

        # Make prediction for the given input using the trained model
        prediction = self.plan_classifier.predict(input_encoded)

        # Convert each string in the list to a list of strings
        daily_activities_lists = [day.split(", ") for day in prediction[0]]

        return daily_activities_lists

    def get_daily_recommendation(self, home_or_gym, level, goal, bodyParts, equipments):
        if goal in ["Lose Weight", "Get Fitter"]:
            goal = "Get Fitter & Lose Weight"
        daily_recommendations = []

        bodyParts = [bp for bp in bodyParts if "-" not in bp]
        # Repeat elements in bodyParts until it reaches a size of 6
        while len(bodyParts) < 6:
            bodyParts += bodyParts

        # Limit bodyParts to size 6
        bodyParts = bodyParts[:6]

        for bodyPart in bodyParts:
            # Predict cluster for the specified combination of goal, level, and body part
            input_data = [[level, goal, bodyPart]]
            predicted_cluster = self.kmeans.predict(self.encoder.transform(input_data))[
                0
            ]
            print(predicted_cluster)
            # Get data for the predicted cluster
            cluster_subset = self.cluster_data[predicted_cluster]

            # Filter data based on location (home or gym)
            if home_or_gym == 0:
                cluster_subset = cluster_subset[
                    ~cluster_subset["equipment"].isin(equipments)
                ]

            # Randomly select one exercise from the cluster if any left after equipment filtering
            if not cluster_subset.empty:
                selected_exercise = random.choice(
                    cluster_subset.to_dict(orient="records")
                )
                daily_recommendations.append(selected_exercise)

        # Remove duplicates from the list
        unique_recommendations = []
        seen_names = set()
        for exercise in daily_recommendations:
            if exercise["name"] not in seen_names:
                unique_recommendations.append(exercise)
                seen_names.add(exercise["name"])

        return unique_recommendations

    def get_gender_adjustment(self, gender):
        return 1.0 if gender == "Male" else 0.7

    def get_age_adjustment(self, age):
        if age < 30:
            return 1.0
        elif 30 <= age < 50:
            return 0.5
        else:
            return 0.1

    def get_level_adjustment(self, level):
        if level == "Beginner":
            return 0.8
        elif level == "Intermediate":
            return 1.0
        elif level == "Advanced":
            return 1.2

    def get_body_part_adjustment(self, body_part):
        body_parts = {
            "chest": 1,
            "shoulders": 0.8,
            "waist": 0.6,
            "upper legs": 0.7,
            "back": 0.9,
            "lower legs": 0.5,
            "upper arms": 0.8,
            "cardio": 0.7,
            "lower arms": 0.6,
            "neck": 0.5,
        }
        return body_parts.get(body_part, 0)

    def adjust_workout(self, gender, age, feedback, body_part, level, old_weight):
        gender_adjustment = self.get_gender_adjustment(gender)
        age_adjustment = self.get_age_adjustment(age)
        level_adjustment = self.get_level_adjustment(level)
        body_part_adjustment = self.get_body_part_adjustment(body_part)

        increasing_factor_of_weight = (
            age_adjustment
            * body_part_adjustment
            * gender_adjustment
            * level_adjustment
            * 0.3
        )

        if not feedback:
            increasing_factor_of_weight = (1 - increasing_factor_of_weight) * -0.1

        new_weight = old_weight + increasing_factor_of_weight * old_weight

        return new_weight

    def calculate_new_repetition(self, level, goal):
        if goal in ["Lose Weight", "Get Fitter"]:
            if level == "Beginner":
                return 15
            elif level == "Intermediate":
                return 12
            elif level == "Expert":
                return 10
        elif goal == "Gain Muscle":
            if level == "Beginner":
                return 10
            elif level == "Intermediate":
                return 8
            elif level == "Advanced":
                return 6

    def calculate_new_duration(self, level):

        if level == "Beginner":
            return 20
        elif level == "Intermediate":
            return 50
        elif level == "Advanced":
            return 80

    def predict(
        self, home_or_gym, level, goal, gender, age, feedback, old_weight, equipments
    ):

        plan = self.choose_plan(level, goal, gender)
        print(plan)

        while len(plan) < 30:
            plan.extend(plan)
        plan = plan[:30]

        all_recommendations = []
        for day_body_parts in plan:
            daily_exercises = self.get_daily_recommendation(
                home_or_gym, level, goal, day_body_parts, equipments
            )
            daily_recommendations = []

            for exercise in daily_exercises:
                weights = self.adjust_workout(
                    gender, age, feedback, exercise["bodyPart"], level, old_weight
                )
                repetitions = self.calculate_new_repetition(level, goal)
                duration = self.calculate_new_duration(level)
                weights_or_duration = (
                    weights if exercise["type"] == "weight" else duration
                )
                exercise_recommendations = {
                    "name": exercise["name"],
                    "type": exercise["type"],
                    "equipment": exercise["equipment"],
                    "bodyPart": exercise["bodyPart"],
                    "target": exercise["target"],
                    "weights_or_duration": weights_or_duration,
                    "sets": exercise["sets"],
                    "repetitions": repetitions,
                }
                daily_recommendations.append(exercise_recommendations)
            all_recommendations.append(daily_recommendations)

        return all_recommendations  # Trim to ensure exactly 30 elements

    @classmethod
    def load(cls):
        with open(FITNESS_MODEL_PATH, "rb") as f:
            print(f)
            fitness_model = pickle.load(f)

        return fitness_model