File size: 10,709 Bytes
8efe822 c5fa028 8efe822 95b8edf 8efe822 95b8edf 8efe822 e61b0b7 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain_core.messages import HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationSummaryMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
import base64
import io
import time
from PIL import Image
import os
# Set your Google API key here
GOOGLE_API_KEY = os.environ.get("api_key")
def convert_to_base64(uploaded_file):
"""Convert uploaded image to Base64 format (supports JPEG and PNG)"""
image = Image.open(uploaded_file)
buffered = io.BytesIO()
# Preserve format (default to PNG if unknown)
format = image.format if image.format in ["JPEG", "PNG"] else "PNG"
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def text():
st.title("Gemini 2.0 Thinking Experimental")
st.sidebar.title("Capabilities:")
# Add bullet points
st.sidebar.markdown("""
- **Text Queries**
- **Visual Queries**
- **PDF Support**
""")
st.markdown("""
<style>
.anim-typewriter {
animation: typewriter 3s steps(40) 1s 1 normal both,
blinkTextCursor 800ms steps(40) infinite normal;
overflow: hidden;
white-space: nowrap;
border-right: 3px solid;
font-family: serif;
font-size: 0.9em;
}
@keyframes typewriter {
from { width: 0; }
to { width: 100%; }
}
@keyframes blinkTextCursor {
from { border-right-color: rgba(255,255,255,0.75); }
to { border-right-color: transparent; }
}
.dot-pulse {
position: relative;
left: -9999px;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #9880ff;
color: #9880ff;
box-shadow: 9999px 0 0 -5px;
animation: dot-pulse 1.5s infinite linear;
animation-delay: 0.25s;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.chat_history = StreamlitChatMessageHistory()
st.session_state.memory = ConversationSummaryMemory(
llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp-01-21", google_api_key=GOOGLE_API_KEY),
memory_key="history",
chat_memory=st.session_state.chat_history
)
# Initialize Gemini model
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-thinking-exp-01-21",
google_api_key=GOOGLE_API_KEY,
temperature=0.3,
streaming=True,
timeout=120,
max_retries=6
)
# Display chat messages
chat_container = st.container()
with chat_container:
# Show initial bot message
if len(st.session_state.messages) == 0:
animated_text = '<div class="anim-typewriter">Hello π, how may I assist you today?</div>'
# st.chat_message("assistant").markdown(animated_text, unsafe_allow_html=True)
st.session_state.messages.append({"role": "assistant", "content": "Hello π, how may I assist you today?"})
# Display historical messages
for message in st.session_state.messages[0:]: # Skip first static message
if message["role"] == "user":
if message.get("image"):
st.chat_message("user", avatar="π§").markdown(
f"""{message["content"]}<br><br>{'<img src="' + message["image"] + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if message["file_type"] == "application/pdf" else '<img src="' + message["image"] + f'" width="200" style="margin-top: 10px; border-radius: 8px;">'}<br> {f'<i style="font-size: 12px;">{message["file_name"]}</i>' if message["file_type"] == "application/pdf" else message["file_name"] if message["file_type"] else ''}""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="π§").markdown(message["content"])
else:
st.chat_message("assistant", avatar="π€").markdown(message["content"])
# Chat input with multimodal support
user_input = st.chat_input("Say something", accept_file=True, file_type=["png", "jpg", "jpeg", "pdf"])
if user_input:
file_type = None
file_name = ""
image_base64 = convert_to_base64("pdf_icon.png")
image_url = f"data:image/jpeg;base64,{image_base64}"
# Process user input
#image_url = ""
message_content = [{"type": "text", "text": user_input.text}]
files = user_input["files"]
if files:
file_type = files[0].type
if file_type in ["image/png", "image/jpg", "image/jpeg"]:
uploaded_file = user_input["files"][0]
image_base64 = convert_to_base64(uploaded_file)
image_url = f"data:image/jpeg;base64,{image_base64}"
message_content.append({"type": "image_url", "image_url": image_url})
text = ""
if file_type == "application/pdf":
uploaded_file = user_input["files"][0]
file_name = files[0].name
pdf_reader = PdfReader(uploaded_file)
for page in pdf_reader.pages:
text += page.extract_text()
#st.sidebar.write(text)
prompt = "this is pdf data: \n"+text +"this is user asking about pdf:"+user_input.text
message_content = [{"type": "text", "text": prompt}]
message_content.append({"type": "text", "text": file_name})
#message_content.append({"type": "image_url", "image_url": image_url})
# Add user message to UI
with chat_container:
if file_type:
st.chat_message("user", avatar="π§").markdown(
f"""
{user_input.text}
<br><br>
{'<img src="' + image_url + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if file_type == "application/pdf" else '<img src="' + image_url + f'" width="200" style="margin-top: 10px; border-radius: 8px;">' if file_type else ''}
<br>
{f'<i style="font-size: 12px;">{file_name}</i>' if file_type == "application/pdf" else file_name if file_type else ''}
""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="π§").markdown(user_input.text)
# Store in session state
st.session_state.messages.append({
"role": "user",
"content": user_input.text,
"image": image_url if user_input["files"] else "",
"file_name" : file_name,
"file_type" : file_type
})
# Create LangChain message
user_message = HumanMessage(content=message_content)
st.session_state.chat_history.add_message(user_message)
# Generate streaming response
history = st.session_state.chat_history.messages
typing_container = st.empty()
def stream_generator(history, user_message):
# Placeholder for "Thinking..." and "Typing..."
typing_container = st.empty()
# Show "Thinking..." first
typing_container.markdown('<p class="fade-text">Thinking...</p>', unsafe_allow_html=True)
st.markdown("""
<style>
@keyframes fade {
0% { opacity: 0.3; }
50% { opacity: 1; }
100% { opacity: 0.3; }
}
.fade-text {
font-size: 16px;
font-weight: bold;
color: #3498db;
animation: fade 1.5s infinite;
}
</style>
""", unsafe_allow_html=True)
response = llm.stream(history + [user_message])
# Buffer for partial words
buffer = ""
# Flag to change message
first_chunk_received = False
# Pause settings
PAUSE_AFTER = {".", "!", "?", ",", ";", ":"}
PAUSE_MULTIPLIER = 2.5 # Pause longer for punctuation
for chunk in response:
if not first_chunk_received:
typing_container.empty()
typing_container.markdown('<p class="fade-text">Typing...</p>', unsafe_allow_html=True)
first_chunk_received = True
content = buffer + chunk.content
words = content.split(' ')
# Check if last word is complete
if not content.endswith(' '):
buffer = words.pop()
else:
buffer = ""
for word in words:
yield word + ' ' # Stream word-by-word
# Add delay for natural pauses
base_delay = 0.03
last_char = word[-1] if word else ''
time.sleep(base_delay * PAUSE_MULTIPLIER if last_char in PAUSE_AFTER else base_delay)
# Yield any remaining content in buffer
if buffer:
yield buffer
time.sleep(0.03)
# Clear "Typing..." message after response finishes
typing_container.empty()
# Generate streaming response
with st.chat_message("assistant", avatar="π€"):
full_response = st.write_stream(
stream_generator(
st.session_state.chat_history.messages,
user_message
)
)
typing_container.empty() # Remove status message
# Update session state
st.session_state.messages.append({
"role": "assistant",
"content": full_response
})
# Update conversation memory
ai_message = AIMessage(content=full_response)
st.session_state.chat_history.add_message(ai_message)
st.session_state.memory.save_context(
{"input": user_message.content},
{"output": ai_message.content}
)
#st.sidebar.write(user_message)
|