import streamlit as st from PyPDF2 import PdfReader from langchain_core.messages import HumanMessage, AIMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.memory import ConversationSummaryMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory import base64 import io import time from PIL import Image import os # Set your Google API key here GOOGLE_API_KEY = os.environ.get("api_key") def convert_to_base64(uploaded_file): """Convert uploaded image to Base64 format (supports JPEG and PNG)""" image = Image.open(uploaded_file) buffered = io.BytesIO() # Preserve format (default to PNG if unknown) format = image.format if image.format in ["JPEG", "PNG"] else "PNG" image.save(buffered, format=format) return base64.b64encode(buffered.getvalue()).decode("utf-8") def text(): st.title("Gemini 2.0 Thinking Experimental") st.sidebar.title("Capabilities:") # Add bullet points st.sidebar.markdown(""" - **Text Queries** - **Visual Queries** - **PDF Support** """) st.markdown(""" """, unsafe_allow_html=True) # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [] st.session_state.chat_history = StreamlitChatMessageHistory() st.session_state.memory = ConversationSummaryMemory( llm=ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp-01-21", google_api_key=GOOGLE_API_KEY), memory_key="history", chat_memory=st.session_state.chat_history ) # Initialize Gemini model llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash-thinking-exp-01-21", google_api_key=GOOGLE_API_KEY, temperature=0.3, streaming=True, timeout=120, max_retries=6 ) # Display chat messages chat_container = st.container() with chat_container: # Show initial bot message if len(st.session_state.messages) == 0: animated_text = '
Thinking...
', unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) response = llm.stream(history + [user_message]) # Buffer for partial words buffer = "" # Flag to change message first_chunk_received = False # Pause settings PAUSE_AFTER = {".", "!", "?", ",", ";", ":"} PAUSE_MULTIPLIER = 2.5 # Pause longer for punctuation for chunk in response: if not first_chunk_received: typing_container.empty() typing_container.markdown('Typing...
', unsafe_allow_html=True) first_chunk_received = True content = buffer + chunk.content words = content.split(' ') # Check if last word is complete if not content.endswith(' '): buffer = words.pop() else: buffer = "" for word in words: yield word + ' ' # Stream word-by-word # Add delay for natural pauses base_delay = 0.03 last_char = word[-1] if word else '' time.sleep(base_delay * PAUSE_MULTIPLIER if last_char in PAUSE_AFTER else base_delay) # Yield any remaining content in buffer if buffer: yield buffer time.sleep(0.03) # Clear "Typing..." message after response finishes typing_container.empty() # Generate streaming response with st.chat_message("assistant", avatar="🤖"): full_response = st.write_stream( stream_generator( st.session_state.chat_history.messages, user_message ) ) typing_container.empty() # Remove status message # Update session state st.session_state.messages.append({ "role": "assistant", "content": full_response }) # Update conversation memory ai_message = AIMessage(content=full_response) st.session_state.chat_history.add_message(ai_message) st.session_state.memory.save_context( {"input": user_message.content}, {"output": ai_message.content} ) #st.sidebar.write(user_message)