mobenta commited on
Commit
1ffb260
·
verified ·
1 Parent(s): bf75a46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -37
app.py CHANGED
@@ -17,7 +17,6 @@ logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime
17
  processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
18
  model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
19
 
20
- @spaces.GPU
21
  def predict(image, input_text):
22
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
  model.to(device)
@@ -132,47 +131,23 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
132
  resized_image = image.resize(new_size, Image.LANCZOS)
133
  resized_image.save(filename)
134
 
135
- logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
 
136
  except Exception as e:
137
- logging.error(f"Error creating or resizing chart: {e}")
138
- raise
139
-
140
- def combine_images(image_paths, output_path='combined_chart.png'):
141
- try:
142
- logging.debug(f"Combining images {image_paths} into {output_path}")
143
- images = [Image.open(path) for path in image_paths]
144
-
145
- # Calculate total width and max height for combined image
146
- total_width = sum(img.width for img in images)
147
- max_height = max(img.height for img in images)
148
-
149
- combined_image = Image.new('RGB', (total_width, max_height))
150
- x_offset = 0
151
- for img in images:
152
- combined_image.paste(img, (x_offset, 0))
153
- x_offset += img.width
154
-
155
- combined_image.save(output_path)
156
- logging.debug(f"Combined image saved to {output_path}")
157
- return output_path
158
- except Exception as e:
159
- logging.error(f"Error combining images: {e}")
160
  raise
161
 
162
  def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
163
  try:
164
- logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
165
-
166
- tickers = [ticker1, ticker2, ticker3, ticker4]
167
  chart_paths = []
 
168
 
169
- for i, ticker in enumerate(tickers):
170
- if ticker:
171
- data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
172
- with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
173
- chart_path = temp_chart.name
174
- create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
175
- chart_paths.append(chart_path)
176
 
177
  if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
178
  with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
@@ -181,7 +156,6 @@ def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, q
181
  insights = predict(Image.open(combined_chart_path), query)
182
  return insights, combined_chart_path
183
 
184
- # No comparative analysis, just return the single chart
185
  if chart_paths:
186
  insights = predict(Image.open(chart_paths[0]), query)
187
  return insights, chart_paths[0]
@@ -224,4 +198,4 @@ def gradio_app():
224
  demo.launch()
225
 
226
  if __name__ == "__main__":
227
- gradio_app()
 
17
  processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
18
  model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
19
 
 
20
  def predict(image, input_text):
21
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
  model.to(device)
 
131
  resized_image = image.resize(new_size, Image.LANCZOS)
132
  resized_image.save(filename)
133
 
134
+ logging.debug(f"Resized image saved to {filename}")
135
+ return filename
136
  except Exception as e:
137
+ logging.error(f"Error creating stock chart: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  raise
139
 
140
  def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
141
  try:
 
 
 
142
  chart_paths = []
143
+ tickers = [ticker1, ticker2, ticker3, ticker4]
144
 
145
+ for ticker in tickers:
146
+ if ticker.strip():
147
+ data = fetch_stock_data(ticker, start_date, end_date, interval)
148
+ chart_path = f"{ticker}_chart.png"
149
+ create_stock_chart(data, ticker, filename=chart_path, timeframe=interval, indicators=indicators)
150
+ chart_paths.append(chart_path)
 
151
 
152
  if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
153
  with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
 
156
  insights = predict(Image.open(combined_chart_path), query)
157
  return insights, combined_chart_path
158
 
 
159
  if chart_paths:
160
  insights = predict(Image.open(chart_paths[0]), query)
161
  return insights, chart_paths[0]
 
198
  demo.launch()
199
 
200
  if __name__ == "__main__":
201
+ gradio_app()