mobenta commited on
Commit
35c1063
·
verified ·
1 Parent(s): 5f92064

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -34
app.py CHANGED
@@ -1,21 +1,28 @@
1
  import torch
2
- import gradio as gr
3
- from transformers import AutoProcessor, AutoModelForPreTraining
4
  import matplotlib.pyplot as plt
5
  import mplfinance as mpf
6
- import yfinance as yf
7
  from PIL import Image, ImageDraw, ImageFont
 
8
  import datetime
9
- import tempfile
10
  import logging
 
 
 
 
 
 
 
 
11
 
12
  # Configure logging
13
  logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
14
 
15
- # Load the model and processor
16
  processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
17
  model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
18
 
 
19
  def predict(image, input_text):
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  model.to(device)
@@ -23,7 +30,7 @@ def predict(image, input_text):
23
  image = image.convert("RGB")
24
  inputs = processor(text=input_text, images=image, return_tensors="pt")
25
  inputs = {k: v.to(device) for k, v in inputs.items()}
26
-
27
  prompt_length = inputs['input_ids'].shape[1]
28
  generate_ids = model.generate(**inputs, max_new_tokens=512)
29
  output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
@@ -130,23 +137,47 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
130
  resized_image = image.resize(new_size, Image.LANCZOS)
131
  resized_image.save(filename)
132
 
133
- logging.debug(f"Resized image saved to {filename}")
134
- return filename
135
  except Exception as e:
136
- logging.error(f"Error creating stock chart: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  raise
138
 
139
  def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
140
  try:
141
- chart_paths = []
 
142
  tickers = [ticker1, ticker2, ticker3, ticker4]
 
143
 
144
- for ticker in tickers:
145
- if ticker.strip():
146
- data = fetch_stock_data(ticker, start_date, end_date, interval)
147
- chart_path = f"{ticker}_chart.png"
148
- create_stock_chart(data, ticker, filename=chart_path, timeframe=interval, indicators=indicators)
149
- chart_paths.append(chart_path)
 
150
 
151
  if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
152
  with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
@@ -155,6 +186,7 @@ def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, q
155
  insights = predict(Image.open(combined_chart_path), query)
156
  return insights, combined_chart_path
157
 
 
158
  if chart_paths:
159
  insights = predict(Image.open(chart_paths[0]), query)
160
  return insights, chart_paths[0]
@@ -166,23 +198,7 @@ def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, q
166
 
167
  def gradio_app():
168
  with gr.Blocks() as demo:
169
- gr.Markdown("""
170
- ## 📈Stock Analysis Dashboard
171
-
172
- This application provides a comprehensive stock analysis tool that allows users to input up to four stock tickers, specify date ranges, and select various financial indicators. The core functionalities include:
173
-
174
- 1. **Data Fetching and Chart Creation**: Historical stock data is fetched from Yahoo Finance, and candlestick charts are generated with optional financial indicators like RSI, SMA, VWAP, and Bollinger Bands.
175
-
176
- 2. **Text Analysis and Insights Generation**: The application uses a pre-trained model based on the **Paligema** architecture to analyze the input chart and text query, generating insightful analysis based on the provided financial data and context.
177
-
178
- 3. **User Interface**: Users can interactively select stocks, date ranges, intervals, and indicators. The app also supports the analysis of single tickers or comparative analysis across multiple tickers.
179
-
180
- 4. **Logging and Debugging**: Detailed logging helps in debugging and tracking the application's processes.
181
-
182
- 5. **Enhanced Image Processing**: The app adds financial metrics and annotations to the generated charts, ensuring clear presentation of data.
183
-
184
- This tool leverages the Paligema model to provide detailed insights into stock market trends, offering an interactive and educational experience for users.
185
- """)
186
 
187
  with gr.Row():
188
  ticker1 = gr.Textbox(label="Primary Ticker", value="GC=F")
@@ -214,4 +230,3 @@ def gradio_app():
214
 
215
  if __name__ == "__main__":
216
  gradio_app()
217
-
 
1
  import torch
2
+ import yfinance as yf
 
3
  import matplotlib.pyplot as plt
4
  import mplfinance as mpf
 
5
  from PIL import Image, ImageDraw, ImageFont
6
+ import gradio as gr
7
  import datetime
 
8
  import logging
9
+ from transformers import AutoProcessor, AutoModelForPreTraining
10
+ import tempfile
11
+ import os
12
+ import spaces
13
+ import pandas as pd
14
+
15
+
16
+
17
 
18
  # Configure logging
19
  logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
20
 
21
+ # Load the chart_analysis model and processor
22
  processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
23
  model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
24
 
25
+ @spaces.GPU
26
  def predict(image, input_text):
27
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
  model.to(device)
 
30
  image = image.convert("RGB")
31
  inputs = processor(text=input_text, images=image, return_tensors="pt")
32
  inputs = {k: v.to(device) for k, v in inputs.items()}
33
+
34
  prompt_length = inputs['input_ids'].shape[1]
35
  generate_ids = model.generate(**inputs, max_new_tokens=512)
36
  output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 
137
  resized_image = image.resize(new_size, Image.LANCZOS)
138
  resized_image.save(filename)
139
 
140
+ logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
 
141
  except Exception as e:
142
+ logging.error(f"Error creating or resizing chart: {e}")
143
+ raise
144
+
145
+ def combine_images(image_paths, output_path='combined_chart.png'):
146
+ try:
147
+ logging.debug(f"Combining images {image_paths} into {output_path}")
148
+ images = [Image.open(path) for path in image_paths]
149
+
150
+ # Calculate total width and max height for combined image
151
+ total_width = sum(img.width for img in images)
152
+ max_height = max(img.height for img in images)
153
+
154
+ combined_image = Image.new('RGB', (total_width, max_height))
155
+ x_offset = 0
156
+ for img in images:
157
+ combined_image.paste(img, (x_offset, 0))
158
+ x_offset += img.width
159
+
160
+ combined_image.save(output_path)
161
+ logging.debug(f"Combined image saved to {output_path}")
162
+ return output_path
163
+ except Exception as e:
164
+ logging.error(f"Error combining images: {e}")
165
  raise
166
 
167
  def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
168
  try:
169
+ logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
170
+
171
  tickers = [ticker1, ticker2, ticker3, ticker4]
172
+ chart_paths = []
173
 
174
+ for i, ticker in enumerate(tickers):
175
+ if ticker:
176
+ data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
177
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
178
+ chart_path = temp_chart.name
179
+ create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
180
+ chart_paths.append(chart_path)
181
 
182
  if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
183
  with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
 
186
  insights = predict(Image.open(combined_chart_path), query)
187
  return insights, combined_chart_path
188
 
189
+ # No comparative analysis, just return the single chart
190
  if chart_paths:
191
  insights = predict(Image.open(chart_paths[0]), query)
192
  return insights, chart_paths[0]
 
198
 
199
  def gradio_app():
200
  with gr.Blocks() as demo:
201
+ gr.Markdown("## Stock Analysis Dashboard")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
  with gr.Row():
204
  ticker1 = gr.Textbox(label="Primary Ticker", value="GC=F")
 
230
 
231
  if __name__ == "__main__":
232
  gradio_app()