Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,23 +6,40 @@ from PIL import Image
|
|
6 |
import gradio as gr
|
7 |
import logging
|
8 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
|
|
9 |
|
10 |
# Configure logging to write to a file
|
11 |
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
print("Using device:", device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Function to fetch stock data with different intervals
|
28 |
def fetch_stock_data(ticker='TSLA', start='2023-01-01', end='2024-01-01', interval='1d'):
|
@@ -80,36 +97,6 @@ def combine_images(image1_path, image2_path, output_path='combined_chart.png'):
|
|
80 |
logging.error(f"Error combining images: {e}")
|
81 |
raise
|
82 |
|
83 |
-
# Function to generate insights
|
84 |
-
def generate_insights(image, query, ticker1=None, ticker2=None):
|
85 |
-
try:
|
86 |
-
logging.debug(f"Generating insights for query: {query}")
|
87 |
-
|
88 |
-
# Open and process the image
|
89 |
-
image = Image.open(image).convert('RGB')
|
90 |
-
inputs = processor(text=query, images=image, return_tensors="pt")
|
91 |
-
logging.debug(f"Inputs prepared with shapes {inputs['input_ids'].shape} and {inputs['pixel_values'].shape}")
|
92 |
-
|
93 |
-
prompt_length = inputs['input_ids'].shape[1]
|
94 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
95 |
-
|
96 |
-
# Generate insights using the model
|
97 |
-
generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512)
|
98 |
-
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
99 |
-
|
100 |
-
# Replace placeholders with actual ticker names in the insights
|
101 |
-
if ticker1:
|
102 |
-
output_text = output_text.replace("[First Ticker]", ticker1)
|
103 |
-
if ticker2:
|
104 |
-
output_text = output_text.replace("[Second Ticker]", ticker2)
|
105 |
-
|
106 |
-
logging.debug(f"Generated insights: {output_text}")
|
107 |
-
|
108 |
-
return output_text
|
109 |
-
except Exception as e:
|
110 |
-
logging.error(f"Error generating insights: {e}")
|
111 |
-
return f"Error generating insights: {e}"
|
112 |
-
|
113 |
# Function to handle the Gradio interface
|
114 |
def gradio_interface(ticker1, start_date, end_date, ticker2, query, analysis_type, interval):
|
115 |
try:
|
@@ -127,10 +114,10 @@ def gradio_interface(ticker1, start_date, end_date, ticker2, query, analysis_typ
|
|
127 |
|
128 |
# Combine the two charts into one image
|
129 |
combined_chart_path = combine_images(chart_path1, chart_path2)
|
130 |
-
insights =
|
131 |
return insights, combined_chart_path
|
132 |
|
133 |
-
insights =
|
134 |
return insights, chart_path1
|
135 |
except Exception as e:
|
136 |
logging.error(f"Error processing image or query: {e}")
|
|
|
6 |
import gradio as gr
|
7 |
import logging
|
8 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
9 |
+
import spaces
|
10 |
|
11 |
# Configure logging to write to a file
|
12 |
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
14 |
+
# Load the ChartGemma model and processor outside the GPU context
|
15 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("ahmed-masry/chartgemma")
|
16 |
+
processor = AutoProcessor.from_pretrained("ahmed-masry/chartgemma")
|
|
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
+
def predict(image, input_text, ticker1=None, ticker2=None):
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
model.to(device)
|
22 |
+
|
23 |
+
image = image.convert("RGB")
|
24 |
+
|
25 |
+
inputs = processor(text=input_text, images=image, return_tensors="pt")
|
26 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
27 |
+
|
28 |
+
prompt_length = inputs['input_ids'].shape[1]
|
29 |
+
|
30 |
+
# Generate insights using the model
|
31 |
+
generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512)
|
32 |
+
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
33 |
+
|
34 |
+
# Replace placeholders with actual ticker names in the insights
|
35 |
+
if ticker1:
|
36 |
+
output_text = output_text.replace("[First Ticker]", ticker1)
|
37 |
+
if ticker2:
|
38 |
+
output_text = output_text.replace("[Second Ticker]", ticker2)
|
39 |
+
|
40 |
+
logging.debug(f"Generated insights: {output_text}")
|
41 |
+
|
42 |
+
return output_text
|
43 |
|
44 |
# Function to fetch stock data with different intervals
|
45 |
def fetch_stock_data(ticker='TSLA', start='2023-01-01', end='2024-01-01', interval='1d'):
|
|
|
97 |
logging.error(f"Error combining images: {e}")
|
98 |
raise
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Function to handle the Gradio interface
|
101 |
def gradio_interface(ticker1, start_date, end_date, ticker2, query, analysis_type, interval):
|
102 |
try:
|
|
|
114 |
|
115 |
# Combine the two charts into one image
|
116 |
combined_chart_path = combine_images(chart_path1, chart_path2)
|
117 |
+
insights = predict(Image.open(combined_chart_path), query, ticker1, ticker2)
|
118 |
return insights, combined_chart_path
|
119 |
|
120 |
+
insights = predict(Image.open(chart_path1), query, ticker1)
|
121 |
return insights, chart_path1
|
122 |
except Exception as e:
|
123 |
logging.error(f"Error processing image or query: {e}")
|