Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,23 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
from transformers import AutoProcessor, AutoModelForPreTraining
|
4 |
import matplotlib.pyplot as plt
|
5 |
import mplfinance as mpf
|
6 |
-
import yfinance as yf
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
8 |
import datetime
|
9 |
-
import tempfile
|
10 |
import logging
|
|
|
|
|
|
|
11 |
|
12 |
# Configure logging
|
13 |
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
|
15 |
-
# Load the model and processor
|
16 |
processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
|
17 |
model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
|
18 |
|
|
|
19 |
def predict(image, input_text):
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
model.to(device)
|
@@ -23,7 +25,7 @@ def predict(image, input_text):
|
|
23 |
image = image.convert("RGB")
|
24 |
inputs = processor(text=input_text, images=image, return_tensors="pt")
|
25 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
26 |
-
|
27 |
prompt_length = inputs['input_ids'].shape[1]
|
28 |
generate_ids = model.generate(**inputs, max_new_tokens=512)
|
29 |
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -50,10 +52,10 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
|
|
50 |
try:
|
51 |
logging.debug(f"Creating chart for {ticker} with timeframe {timeframe} and saving to {filename}")
|
52 |
title = f"{ticker.upper()} Price Data (Timeframe: {timeframe})"
|
53 |
-
|
54 |
plt.rcParams["axes.titlesize"] = 10
|
55 |
my_style = mpf.make_mpf_style(base_mpf_style='charles')
|
56 |
-
|
57 |
# Calculate indicators if selected
|
58 |
addplot = []
|
59 |
if indicators:
|
@@ -93,7 +95,7 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
|
|
93 |
|
94 |
fig, axlist = mpf.plot(data, type='candle', style=my_style, volume=True, addplot=addplot, returnfig=True)
|
95 |
fig.suptitle(title, y=0.98)
|
96 |
-
|
97 |
# Save chart image
|
98 |
fig.savefig(filename, dpi=300)
|
99 |
plt.close(fig)
|
@@ -117,7 +119,7 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
|
|
117 |
metrics["SMA 50"] = f"${data['Close'].rolling(window=50).mean().iloc[-1]:,.2f}"
|
118 |
if 'SMA200' in indicators:
|
119 |
metrics["SMA 200"] = f"${data['Close'].rolling(window=200).mean().iloc[-1]:,.2f}"
|
120 |
-
|
121 |
# Draw metrics on the image
|
122 |
y_text = image.height - 50 # Starting y position for text
|
123 |
for key, value in metrics.items():
|
@@ -130,23 +132,47 @@ def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indic
|
|
130 |
resized_image = image.resize(new_size, Image.LANCZOS)
|
131 |
resized_image.save(filename)
|
132 |
|
133 |
-
logging.debug(f"Resized image saved to {filename}")
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
-
logging.error(f"Error
|
137 |
raise
|
138 |
|
139 |
def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
|
140 |
try:
|
141 |
-
|
|
|
142 |
tickers = [ticker1, ticker2, ticker3, ticker4]
|
|
|
143 |
|
144 |
-
for ticker in tickers:
|
145 |
-
if ticker
|
146 |
-
data = fetch_stock_data(ticker, start_date, end_date, interval)
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
|
152 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
|
@@ -155,6 +181,7 @@ def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, q
|
|
155 |
insights = predict(Image.open(combined_chart_path), query)
|
156 |
return insights, combined_chart_path
|
157 |
|
|
|
158 |
if chart_paths:
|
159 |
insights = predict(Image.open(chart_paths[0]), query)
|
160 |
return insights, chart_paths[0]
|
|
|
1 |
import torch
|
2 |
+
import yfinance as yf
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import mplfinance as mpf
|
|
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import gradio as gr
|
7 |
import datetime
|
|
|
8 |
import logging
|
9 |
+
from transformers import AutoProcessor, AutoModelForPreTraining
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
|
13 |
# Configure logging
|
14 |
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
+
# Load the ChartGemma model and processor
|
17 |
processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
|
18 |
model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
|
19 |
|
20 |
+
@spaces.GPU
|
21 |
def predict(image, input_text):
|
22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
model.to(device)
|
|
|
25 |
image = image.convert("RGB")
|
26 |
inputs = processor(text=input_text, images=image, return_tensors="pt")
|
27 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
28 |
+
|
29 |
prompt_length = inputs['input_ids'].shape[1]
|
30 |
generate_ids = model.generate(**inputs, max_new_tokens=512)
|
31 |
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
52 |
try:
|
53 |
logging.debug(f"Creating chart for {ticker} with timeframe {timeframe} and saving to {filename}")
|
54 |
title = f"{ticker.upper()} Price Data (Timeframe: {timeframe})"
|
55 |
+
|
56 |
plt.rcParams["axes.titlesize"] = 10
|
57 |
my_style = mpf.make_mpf_style(base_mpf_style='charles')
|
58 |
+
|
59 |
# Calculate indicators if selected
|
60 |
addplot = []
|
61 |
if indicators:
|
|
|
95 |
|
96 |
fig, axlist = mpf.plot(data, type='candle', style=my_style, volume=True, addplot=addplot, returnfig=True)
|
97 |
fig.suptitle(title, y=0.98)
|
98 |
+
|
99 |
# Save chart image
|
100 |
fig.savefig(filename, dpi=300)
|
101 |
plt.close(fig)
|
|
|
119 |
metrics["SMA 50"] = f"${data['Close'].rolling(window=50).mean().iloc[-1]:,.2f}"
|
120 |
if 'SMA200' in indicators:
|
121 |
metrics["SMA 200"] = f"${data['Close'].rolling(window=200).mean().iloc[-1]:,.2f}"
|
122 |
+
|
123 |
# Draw metrics on the image
|
124 |
y_text = image.height - 50 # Starting y position for text
|
125 |
for key, value in metrics.items():
|
|
|
132 |
resized_image = image.resize(new_size, Image.LANCZOS)
|
133 |
resized_image.save(filename)
|
134 |
|
135 |
+
logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
|
136 |
+
except Exception as e:
|
137 |
+
logging.error(f"Error creating or resizing chart: {e}")
|
138 |
+
raise
|
139 |
+
|
140 |
+
def combine_images(image_paths, output_path='combined_chart.png'):
|
141 |
+
try:
|
142 |
+
logging.debug(f"Combining images {image_paths} into {output_path}")
|
143 |
+
images = [Image.open(path) for path in image_paths]
|
144 |
+
|
145 |
+
# Calculate total width and max height for combined image
|
146 |
+
total_width = sum(img.width for img in images)
|
147 |
+
max_height = max(img.height for img in images)
|
148 |
+
|
149 |
+
combined_image = Image.new('RGB', (total_width, max_height))
|
150 |
+
x_offset = 0
|
151 |
+
for img in images:
|
152 |
+
combined_image.paste(img, (x_offset, 0))
|
153 |
+
x_offset += img.width
|
154 |
+
|
155 |
+
combined_image.save(output_path)
|
156 |
+
logging.debug(f"Combined image saved to {output_path}")
|
157 |
+
return output_path
|
158 |
except Exception as e:
|
159 |
+
logging.error(f"Error combining images: {e}")
|
160 |
raise
|
161 |
|
162 |
def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
|
163 |
try:
|
164 |
+
logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
|
165 |
+
|
166 |
tickers = [ticker1, ticker2, ticker3, ticker4]
|
167 |
+
chart_paths = []
|
168 |
|
169 |
+
for i, ticker in enumerate(tickers):
|
170 |
+
if ticker:
|
171 |
+
data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
|
172 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
|
173 |
+
chart_path = temp_chart.name
|
174 |
+
create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
|
175 |
+
chart_paths.append(chart_path)
|
176 |
|
177 |
if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
|
178 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
|
|
|
181 |
insights = predict(Image.open(combined_chart_path), query)
|
182 |
return insights, combined_chart_path
|
183 |
|
184 |
+
# No comparative analysis, just return the single chart
|
185 |
if chart_paths:
|
186 |
insights = predict(Image.open(chart_paths[0]), query)
|
187 |
return insights, chart_paths[0]
|