Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,10 @@ import subprocess
|
|
2 |
import gradio as gr
|
3 |
from openai import OpenAI
|
4 |
import json
|
5 |
-
from agno.agent import Agent, RunResponse
|
6 |
-
from agno.models.openai.like import OpenAILike
|
7 |
|
8 |
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
|
9 |
|
10 |
-
|
11 |
-
model=OpenAILike(
|
12 |
-
id="model",
|
13 |
-
api_key="no-token",
|
14 |
-
base_url="http://0.0.0.0:8000/v1",
|
15 |
-
),
|
16 |
-
reasoning=True
|
17 |
-
)
|
18 |
-
|
19 |
|
20 |
def handle_function_call(function_name, arguments):
|
21 |
"""Handle function calls from the model"""
|
@@ -40,6 +30,8 @@ def respond(
|
|
40 |
message,
|
41 |
history: list[tuple[str, str]] = [],
|
42 |
system_message=None,
|
|
|
|
|
43 |
):
|
44 |
messages = []
|
45 |
if system_message:
|
@@ -53,15 +45,98 @@ def respond(
|
|
53 |
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
|
56 |
-
output = ""
|
57 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
print("messages", messages)
|
59 |
-
|
|
|
|
|
60 |
|
61 |
for chunk in stream:
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
except Exception as e:
|
67 |
print(f"[Error] {e}")
|
@@ -71,4 +146,4 @@ def respond(
|
|
71 |
demo = gr.ChatInterface(respond)
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
-
demo.launch(show_api=False)
|
|
|
2 |
import gradio as gr
|
3 |
from openai import OpenAI
|
4 |
import json
|
|
|
|
|
5 |
|
6 |
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
|
7 |
|
8 |
+
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="sk-local", timeout=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def handle_function_call(function_name, arguments):
|
11 |
"""Handle function calls from the model"""
|
|
|
30 |
message,
|
31 |
history: list[tuple[str, str]] = [],
|
32 |
system_message=None,
|
33 |
+
max_tokens=None,
|
34 |
+
temperature=0.7,
|
35 |
):
|
36 |
messages = []
|
37 |
if system_message:
|
|
|
45 |
|
46 |
messages.append({"role": "user", "content": message})
|
47 |
|
|
|
48 |
try:
|
49 |
+
stream = client.chat.completions.create(
|
50 |
+
model="Deepseek-R1-0528-Qwen3-8B",
|
51 |
+
messages=messages,
|
52 |
+
max_tokens=max_tokens,
|
53 |
+
temperature=temperature,
|
54 |
+
stream=True,
|
55 |
+
tools=[
|
56 |
+
{
|
57 |
+
"type": "function",
|
58 |
+
"function": {
|
59 |
+
"name": "browser_search",
|
60 |
+
"description": (
|
61 |
+
"Search the web for a given query and return the most relevant results."
|
62 |
+
),
|
63 |
+
"parameters": {
|
64 |
+
"type": "object",
|
65 |
+
"properties": {
|
66 |
+
"query": {
|
67 |
+
"type": "string",
|
68 |
+
"description": "The search query string.",
|
69 |
+
},
|
70 |
+
"max_results": {
|
71 |
+
"type": "integer",
|
72 |
+
"description": (
|
73 |
+
"Maximum number of search results to return. "
|
74 |
+
"If omitted the service will use its default."
|
75 |
+
),
|
76 |
+
"default": 5,
|
77 |
+
},
|
78 |
+
},
|
79 |
+
"required": ["query"],
|
80 |
+
},
|
81 |
+
},
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"type": "function",
|
85 |
+
"function": {
|
86 |
+
"name": "code_interpreter",
|
87 |
+
"description": (
|
88 |
+
"Execute Python code and return the results. "
|
89 |
+
"Can generate plots, perform calculations, and data analysis."
|
90 |
+
),
|
91 |
+
"parameters": {
|
92 |
+
"type": "object",
|
93 |
+
"properties": {
|
94 |
+
"code": {
|
95 |
+
"type": "string",
|
96 |
+
"description": "The Python code to execute.",
|
97 |
+
},
|
98 |
+
},
|
99 |
+
"required": ["code"],
|
100 |
+
},
|
101 |
+
},
|
102 |
+
},
|
103 |
+
],
|
104 |
+
)
|
105 |
+
|
106 |
print("messages", messages)
|
107 |
+
output = ""
|
108 |
+
reasoning = ""
|
109 |
+
function_calls_to_handle = []
|
110 |
|
111 |
for chunk in stream:
|
112 |
+
delta = chunk.choices[0].delta
|
113 |
+
|
114 |
+
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
115 |
+
for tool_call in delta.tool_calls:
|
116 |
+
if tool_call.function:
|
117 |
+
function_calls_to_handle.append(
|
118 |
+
{
|
119 |
+
"name": tool_call.function.name,
|
120 |
+
"arguments": json.loads(tool_call.function.arguments),
|
121 |
+
}
|
122 |
+
)
|
123 |
+
|
124 |
+
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
125 |
+
reasoning += delta.reasoning_content
|
126 |
+
elif delta.content:
|
127 |
+
output += delta.content
|
128 |
+
|
129 |
+
yield f"*{reasoning}*\n{output}"
|
130 |
+
|
131 |
+
if function_calls_to_handle:
|
132 |
+
for func_call in function_calls_to_handle:
|
133 |
+
func_result = handle_function_call(
|
134 |
+
func_call["name"], func_call["arguments"]
|
135 |
+
)
|
136 |
+
output += (
|
137 |
+
f"\n\n**Function Result ({func_call['name']}):**\n{func_result}"
|
138 |
+
)
|
139 |
+
yield output
|
140 |
|
141 |
except Exception as e:
|
142 |
print(f"[Error] {e}")
|
|
|
146 |
demo = gr.ChatInterface(respond)
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
+
demo.launch(show_api=False)
|