v1
Browse files- .gitignore +3 -0
- app.py +64 -0
- llm.py +61 -0
- requirements.txt +7 -0
- vector_store.py +40 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
/__pycache__
|
2 |
+
/temp
|
3 |
+
/models
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from llm import load_llm, response_generator
|
3 |
+
from vector_store import load_vector_store, process_pdf
|
4 |
+
from uuid import uuid4
|
5 |
+
|
6 |
+
# repo_id = "Qwen/Qwen2.5-0.5B-Instruct-GGUF"
|
7 |
+
# filename = "qwen2.5-0.5b-instruct-q8_0.gguf"
|
8 |
+
repo_id = "MaziyarPanahi/Qwen2.5-7B-Instruct-GGUF"
|
9 |
+
filename = "Qwen2.5-7B-Instruct.Q4_K_S.gguf"
|
10 |
+
|
11 |
+
llm = load_llm(repo_id, filename)
|
12 |
+
|
13 |
+
st.title("PDF QA")
|
14 |
+
# Initialize chat history
|
15 |
+
if "messages" not in st.session_state:
|
16 |
+
st.session_state.messages = []
|
17 |
+
|
18 |
+
# Display chat messages from history on app rerun
|
19 |
+
for message in st.session_state.messages:
|
20 |
+
with st.chat_message(message["role"]):
|
21 |
+
if message["role"] == "user":
|
22 |
+
st.markdown(message["content"])
|
23 |
+
else:
|
24 |
+
st.code(message["content"])
|
25 |
+
|
26 |
+
# Accept user input
|
27 |
+
if prompt := st.chat_input("What is up?"):
|
28 |
+
# Add user message to chat history
|
29 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
30 |
+
# Display user message in chat message container
|
31 |
+
with st.chat_message("user"):
|
32 |
+
st.markdown(prompt)
|
33 |
+
|
34 |
+
# Display assistant response in chat message container
|
35 |
+
with st.chat_message("assistant"):
|
36 |
+
vector_store = load_vector_store()
|
37 |
+
retriever = vector_store.as_retriever()
|
38 |
+
docs = retriever.get_relevant_documents(prompt)
|
39 |
+
|
40 |
+
response = response_generator(llm, st.session_state.messages, prompt, retriever)
|
41 |
+
|
42 |
+
st.markdown(response["answer"])
|
43 |
+
|
44 |
+
# Add assistant response to chat history
|
45 |
+
st.session_state.messages.append(
|
46 |
+
{"role": "assistant", "content": response["answer"]}
|
47 |
+
)
|
48 |
+
|
49 |
+
with st.sidebar:
|
50 |
+
st.title("PDFs")
|
51 |
+
st.write("Upload your pdfs here")
|
52 |
+
uploaded_files = st.file_uploader(
|
53 |
+
"Choose a PDF file", accept_multiple_files=True, type="pdf"
|
54 |
+
)
|
55 |
+
if uploaded_files is not None:
|
56 |
+
vector_store = load_vector_store()
|
57 |
+
for uploaded_file in uploaded_files:
|
58 |
+
temp_file = f"./temp/{uploaded_file.name}-{uuid4()}.pdf"
|
59 |
+
with open(temp_file, "wb") as file:
|
60 |
+
file.write(uploaded_file.getvalue())
|
61 |
+
|
62 |
+
st.write("filename:", uploaded_file.name)
|
63 |
+
process_pdf(temp_file, vector_store)
|
64 |
+
st.success("PDFs uploaded successfully. ✅")
|
llm.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pathlib
|
3 |
+
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from langchain_community.llms import LlamaCpp
|
6 |
+
from langchain.chains import create_retrieval_chain
|
7 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
|
10 |
+
|
11 |
+
@st.cache_resource()
|
12 |
+
def load_llm(repo_id, filename):
|
13 |
+
# Create a directory for models if it doesn't exist
|
14 |
+
models_folder = pathlib.Path("models")
|
15 |
+
models_folder.mkdir(exist_ok=True)
|
16 |
+
|
17 |
+
# Download the model
|
18 |
+
model_path = hf_hub_download(
|
19 |
+
repo_id=repo_id, filename=filename, local_dir=models_folder
|
20 |
+
)
|
21 |
+
|
22 |
+
llm = LlamaCpp(
|
23 |
+
model_path=model_path,
|
24 |
+
repo_id=repo_id,
|
25 |
+
filename=filename,
|
26 |
+
verbose=False,
|
27 |
+
use_mmap=True,
|
28 |
+
use_mlock=True,
|
29 |
+
n_threads=4,
|
30 |
+
n_threads_batch=4,
|
31 |
+
n_ctx=8000,
|
32 |
+
)
|
33 |
+
print(f"{repo_id} loaded successfully. ✅")
|
34 |
+
return llm
|
35 |
+
|
36 |
+
|
37 |
+
# Streamed response emulator
|
38 |
+
def response_generator(llm, messages, question, retriever):
|
39 |
+
system_prompt = (
|
40 |
+
"You are an assistant for question-answering tasks. "
|
41 |
+
"Use the following pieces of retrieved context to answer "
|
42 |
+
"the question. If you don't know the answer, say that you "
|
43 |
+
"don't know. Use three sentences maximum and keep the "
|
44 |
+
"answer concise."
|
45 |
+
"\n\n"
|
46 |
+
"{context}"
|
47 |
+
)
|
48 |
+
|
49 |
+
prompt = ChatPromptTemplate.from_messages(
|
50 |
+
[
|
51 |
+
("system", system_prompt),
|
52 |
+
("user", "{input}"),
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
57 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
58 |
+
|
59 |
+
results = rag_chain.invoke({"input": question})
|
60 |
+
|
61 |
+
return results
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
llama-cpp-python
|
3 |
+
pypdf
|
4 |
+
langchain_community
|
5 |
+
chromadb
|
6 |
+
langchain-huggingface
|
7 |
+
langchain-chroma
|
vector_store.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
|
7 |
+
|
8 |
+
@st.cache_resource()
|
9 |
+
def load_embedding_model(model):
|
10 |
+
"""
|
11 |
+
sentence-transformers/all-mpnet-base-v2
|
12 |
+
sentence-transformers/all-MiniLM-L6-v2
|
13 |
+
"""
|
14 |
+
model = HuggingFaceEmbeddings(model_name=model)
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
def load_vector_store():
|
19 |
+
"""
|
20 |
+
Loads a simple vector store
|
21 |
+
I didn't use @st.cache because I want to
|
22 |
+
load vector store on every page load
|
23 |
+
"""
|
24 |
+
model = load_embedding_model("sentence-transformers/all-MiniLM-L6-v2")
|
25 |
+
vector_store = Chroma(
|
26 |
+
collection_name="main_store",
|
27 |
+
embedding_function=model,
|
28 |
+
)
|
29 |
+
return vector_store
|
30 |
+
|
31 |
+
|
32 |
+
def process_pdf(pdf, vector_store):
|
33 |
+
"""
|
34 |
+
Loads a pdf and splits it into chunks
|
35 |
+
"""
|
36 |
+
loader = PyPDFLoader(pdf)
|
37 |
+
docs = loader.load()
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
39 |
+
splits = text_splitter.split_documents(docs)
|
40 |
+
vector_store.add_documents(splits)
|