model-man commited on
Commit
e8cb8d8
·
1 Parent(s): d5f4f16

Updated to run MMS

Browse files
Files changed (1) hide show
  1. app.py +11 -15
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -11,38 +11,34 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import VitsModel, VitsTokenize, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
+ # load text-to-speech checkpoint for MMS
15
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
16
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
17
 
 
 
 
 
 
18
 
19
 
20
  def translate(audio):
21
+ outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
22
  return outputs["text"]
23
 
24
 
25
  def synthesise(text):
26
+ inputs = tokenizer(text=text, return_tensors="pt")
27
+ speech = model(inputs["input_ids"].to(device))
28
+ return speech.audio[0].cpu()
29
 
30
 
31
  def speech_to_speech_translation(audio):
32
  translated_text = translate(audio)
33
  synthesised_speech = synthesise(translated_text)
34
+ synthesised_speech = (synthesised_speech.detach().numpy() * 32767).astype(np.int16)
35
  return 16000, synthesised_speech
36
 
37
 
38
  title = "Cascaded STST"
39
  description = """
40
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
41
+ [MMS TTS](https://huggingface.co/facebook/mms-tts) model for text-to-speech:
42
 
43
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
44
  """