File size: 22,027 Bytes
50eec37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# Code from: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
from __future__ import annotations

from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import comfy.ldm.common_dit

from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND


def modulate(x, scale):
    return x * (1 + scale.unsqueeze(1))

#############################################################################
#                               Core NextDiT Model                              #
#############################################################################


class JointAttention(nn.Module):
    """Multi-head attention module."""

    def __init__(
        self,
        dim: int,
        n_heads: int,
        n_kv_heads: Optional[int],
        qk_norm: bool,
        operation_settings={},
    ):
        """
        Initialize the Attention module.

        Args:
            dim (int): Number of input dimensions.
            n_heads (int): Number of heads.
            n_kv_heads (Optional[int]): Number of kv heads, if using GQA.

        """
        super().__init__()
        self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
        self.n_local_heads = n_heads
        self.n_local_kv_heads = self.n_kv_heads
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = dim // n_heads

        self.qkv = operation_settings.get("operations").Linear(
            dim,
            (n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.out = operation_settings.get("operations").Linear(
            n_heads * self.head_dim,
            dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        if qk_norm:
            self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
            self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
        else:
            self.q_norm = self.k_norm = nn.Identity()

    @staticmethod
    def apply_rotary_emb(
        x_in: torch.Tensor,
        freqs_cis: torch.Tensor,
    ) -> torch.Tensor:
        """
        Apply rotary embeddings to input tensors using the given frequency
        tensor.

        This function applies rotary embeddings to the given query 'xq' and
        key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
        input tensors are reshaped as complex numbers, and the frequency tensor
        is reshaped for broadcasting compatibility. The resulting tensors
        contain rotary embeddings and are returned as real tensors.

        Args:
            x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
            freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
                exponentials.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
                and key tensor with rotary embeddings.
        """

        t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
        t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
        return t_out.reshape(*x_in.shape)

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
    ) -> torch.Tensor:
        """

        Args:
            x:
            x_mask:
            freqs_cis:

        Returns:

        """
        bsz, seqlen, _ = x.shape

        xq, xk, xv = torch.split(
            self.qkv(x),
            [
                self.n_local_heads * self.head_dim,
                self.n_local_kv_heads * self.head_dim,
                self.n_local_kv_heads * self.head_dim,
            ],
            dim=-1,
        )
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        xq = self.q_norm(xq)
        xk = self.k_norm(xk)

        xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
        xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)

        n_rep = self.n_local_heads // self.n_local_kv_heads
        if n_rep >= 1:
            xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
        output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)

        return self.out(output)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int,
        ffn_dim_multiplier: Optional[float],
        operation_settings={},
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.
            multiple_of (int): Value to ensure hidden dimension is a multiple
                of this value.
            ffn_dim_multiplier (float, optional): Custom multiplier for hidden
                dimension. Defaults to None.

        """
        super().__init__()
        # custom dim factor multiplier
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = operation_settings.get("operations").Linear(
            dim,
            hidden_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.w2 = operation_settings.get("operations").Linear(
            hidden_dim,
            dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.w3 = operation_settings.get("operations").Linear(
            dim,
            hidden_dim,
            bias=False,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

    # @torch.compile
    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))


class JointTransformerBlock(nn.Module):
    def __init__(
        self,
        layer_id: int,
        dim: int,
        n_heads: int,
        n_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        qk_norm: bool,
        modulation=True,
        operation_settings={},
    ) -> None:
        """
        Initialize a TransformerBlock.

        Args:
            layer_id (int): Identifier for the layer.
            dim (int): Embedding dimension of the input features.
            n_heads (int): Number of attention heads.
            n_kv_heads (Optional[int]): Number of attention heads in key and
                value features (if using GQA), or set to None for the same as
                query.
            multiple_of (int):
            ffn_dim_multiplier (float):
            norm_eps (float):

        """
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads
        self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
        self.feed_forward = FeedForward(
            dim=dim,
            hidden_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
            operation_settings=operation_settings,
        )
        self.layer_id = layer_id
        self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)

        self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)

        self.modulation = modulation
        if modulation:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                operation_settings.get("operations").Linear(
                    min(dim, 1024),
                    4 * dim,
                    bias=True,
                    device=operation_settings.get("device"),
                    dtype=operation_settings.get("dtype"),
                ),
            )

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        adaln_input: Optional[torch.Tensor]=None,
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.

        Returns:
            torch.Tensor: Output tensor after applying attention and
                feedforward layers.

        """
        if self.modulation:
            assert adaln_input is not None
            scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)

            x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
                self.attention(
                    modulate(self.attention_norm1(x), scale_msa),
                    x_mask,
                    freqs_cis,
                )
            )
            x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
                self.feed_forward(
                    modulate(self.ffn_norm1(x), scale_mlp),
                )
            )
        else:
            assert adaln_input is None
            x = x + self.attention_norm2(
                self.attention(
                    self.attention_norm1(x),
                    x_mask,
                    freqs_cis,
                )
            )
            x = x + self.ffn_norm2(
                self.feed_forward(
                    self.ffn_norm1(x),
                )
            )
        return x


class FinalLayer(nn.Module):
    """
    The final layer of NextDiT.
    """

    def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
        super().__init__()
        self.norm_final = operation_settings.get("operations").LayerNorm(
            hidden_size,
            elementwise_affine=False,
            eps=1e-6,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )
        self.linear = operation_settings.get("operations").Linear(
            hidden_size,
            patch_size * patch_size * out_channels,
            bias=True,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            operation_settings.get("operations").Linear(
                min(hidden_size, 1024),
                hidden_size,
                bias=True,
                device=operation_settings.get("device"),
                dtype=operation_settings.get("dtype"),
            ),
        )

    def forward(self, x, c):
        scale = self.adaLN_modulation(c)
        x = modulate(self.norm_final(x), scale)
        x = self.linear(x)
        return x


class NextDiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 4,
        dim: int = 4096,
        n_layers: int = 32,
        n_refiner_layers: int = 2,
        n_heads: int = 32,
        n_kv_heads: Optional[int] = None,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        qk_norm: bool = False,
        cap_feat_dim: int = 5120,
        axes_dims: List[int] = (16, 56, 56),
        axes_lens: List[int] = (1, 512, 512),
        image_model=None,
        device=None,
        dtype=None,
        operations=None,
    ) -> None:
        super().__init__()
        self.dtype = dtype
        operation_settings = {"operations": operations, "device": device, "dtype": dtype}
        self.in_channels = in_channels
        self.out_channels = in_channels
        self.patch_size = patch_size

        self.x_embedder = operation_settings.get("operations").Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=dim,
            bias=True,
            device=operation_settings.get("device"),
            dtype=operation_settings.get("dtype"),
        )

        self.noise_refiner = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    modulation=True,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )
        self.context_refiner = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    modulation=False,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )

        self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
        self.cap_embedder = nn.Sequential(
            RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
            operation_settings.get("operations").Linear(
                cap_feat_dim,
                dim,
                bias=True,
                device=operation_settings.get("device"),
                dtype=operation_settings.get("dtype"),
            ),
        )

        self.layers = nn.ModuleList(
            [
                JointTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    qk_norm,
                    operation_settings=operation_settings,
                )
                for layer_id in range(n_layers)
            ]
        )
        self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
        self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)

        assert (dim // n_heads) == sum(axes_dims)
        self.axes_dims = axes_dims
        self.axes_lens = axes_lens
        self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
        self.dim = dim
        self.n_heads = n_heads

    def unpatchify(
        self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
    ) -> List[torch.Tensor]:
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        pH = pW = self.patch_size
        imgs = []
        for i in range(x.size(0)):
            H, W = img_size[i]
            begin = cap_size[i]
            end = begin + (H // pH) * (W // pW)
            imgs.append(
                x[i][begin:end]
                .view(H // pH, W // pW, pH, pW, self.out_channels)
                .permute(4, 0, 2, 1, 3)
                .flatten(3, 4)
                .flatten(1, 2)
            )

        if return_tensor:
            imgs = torch.stack(imgs, dim=0)
        return imgs

    def patchify_and_embed(
        self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
    ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
        bsz = len(x)
        pH = pW = self.patch_size
        device = x[0].device
        dtype = x[0].dtype

        if cap_mask is not None:
            l_effective_cap_len = cap_mask.sum(dim=1).tolist()
        else:
            l_effective_cap_len = [num_tokens] * bsz

        if cap_mask is not None and not torch.is_floating_point(cap_mask):
            cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max

        img_sizes = [(img.size(1), img.size(2)) for img in x]
        l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]

        max_seq_len = max(
            (cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
        )
        max_cap_len = max(l_effective_cap_len)
        max_img_len = max(l_effective_img_len)

        position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)

        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]
            H, W = img_sizes[i]
            H_tokens, W_tokens = H // pH, W // pW
            assert H_tokens * W_tokens == img_len

            position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
            position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
            row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
            col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
            position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
            position_ids[i, cap_len:cap_len+img_len, 2] = col_ids

        freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)

        # build freqs_cis for cap and image individually
        cap_freqs_cis_shape = list(freqs_cis.shape)
        # cap_freqs_cis_shape[1] = max_cap_len
        cap_freqs_cis_shape[1] = cap_feats.shape[1]
        cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)

        img_freqs_cis_shape = list(freqs_cis.shape)
        img_freqs_cis_shape[1] = max_img_len
        img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)

        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]
            cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
            img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]

        # refine context
        for layer in self.context_refiner:
            cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)

        # refine image
        flat_x = []
        for i in range(bsz):
            img = x[i]
            C, H, W = img.size()
            img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
            flat_x.append(img)
        x = flat_x
        padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
        padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
        for i in range(bsz):
            padded_img_embed[i, :l_effective_img_len[i]] = x[i]
            padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max

        padded_img_embed = self.x_embedder(padded_img_embed)
        padded_img_mask = padded_img_mask.unsqueeze(1)
        for layer in self.noise_refiner:
            padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)

        if cap_mask is not None:
            mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
            mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
        else:
            mask = None

        padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
        for i in range(bsz):
            cap_len = l_effective_cap_len[i]
            img_len = l_effective_img_len[i]

            padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
            padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]

        return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis

    # def forward(self, x, t, cap_feats, cap_mask):
    def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
        t = 1.0 - timesteps
        cap_feats = context
        cap_mask = attention_mask
        bs, c, h, w = x.shape
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
        """
        Forward pass of NextDiT.
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of text tokens/features
        """

        t = self.t_embedder(t, dtype=x.dtype)  # (N, D)
        adaln_input = t

        cap_feats = self.cap_embedder(cap_feats)  # (N, L, D)  # todo check if able to batchify w.o. redundant compute

        x_is_tensor = isinstance(x, torch.Tensor)
        x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
        freqs_cis = freqs_cis.to(x.device)

        for layer in self.layers:
            x = layer(x, mask, freqs_cis, adaln_input)

        x = self.final_layer(x, adaln_input)
        x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]

        return -x