Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
from comfy.ldm.flux.layers import ( | |
DoubleStreamBlock, | |
LastLayer, | |
MLPEmbedder, | |
SingleStreamBlock, | |
timestep_embedding, | |
) | |
class Hunyuan3Dv2(nn.Module): | |
def __init__( | |
self, | |
in_channels=64, | |
context_in_dim=1536, | |
hidden_size=1024, | |
mlp_ratio=4.0, | |
num_heads=16, | |
depth=16, | |
depth_single_blocks=32, | |
qkv_bias=True, | |
guidance_embed=False, | |
image_model=None, | |
dtype=None, | |
device=None, | |
operations=None | |
): | |
super().__init__() | |
self.dtype = dtype | |
if hidden_size % num_heads != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
) | |
self.max_period = 1000 # While reimplementing the model I noticed that they messed up. This 1000 value was meant to be the time_factor but they set the max_period instead | |
self.latent_in = operations.Linear(in_channels, hidden_size, bias=True, dtype=dtype, device=device) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=hidden_size, dtype=dtype, device=device, operations=operations) if guidance_embed else None | |
) | |
self.cond_in = operations.Linear(context_in_dim, hidden_size, dtype=dtype, device=device) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
dtype=dtype, device=device, operations=operations | |
) | |
for _ in range(depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
dtype=dtype, device=device, operations=operations | |
) | |
for _ in range(depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations) | |
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs): | |
x = x.movedim(-1, -2) | |
timestep = 1.0 - timestep | |
txt = context | |
img = self.latent_in(x) | |
vec = self.time_in(timestep_embedding(timestep, 256, self.max_period).to(dtype=img.dtype)) | |
if self.guidance_in is not None: | |
if guidance is not None: | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256, self.max_period).to(img.dtype)) | |
txt = self.cond_in(txt) | |
pe = None | |
attn_mask = None | |
patches_replace = transformer_options.get("patches_replace", {}) | |
blocks_replace = patches_replace.get("dit", {}) | |
for i, block in enumerate(self.double_blocks): | |
if ("double_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"], out["txt"] = block(img=args["img"], | |
txt=args["txt"], | |
vec=args["vec"], | |
pe=args["pe"], | |
attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("double_block", i)]({"img": img, | |
"txt": txt, | |
"vec": vec, | |
"pe": pe, | |
"attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
txt = out["txt"] | |
img = out["img"] | |
else: | |
img, txt = block(img=img, | |
txt=txt, | |
vec=vec, | |
pe=pe, | |
attn_mask=attn_mask) | |
img = torch.cat((txt, img), 1) | |
for i, block in enumerate(self.single_blocks): | |
if ("single_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"] = block(args["img"], | |
vec=args["vec"], | |
pe=args["pe"], | |
attn_mask=args.get("attn_mask")) | |
return out | |
out = blocks_replace[("single_block", i)]({"img": img, | |
"vec": vec, | |
"pe": pe, | |
"attn_mask": attn_mask}, | |
{"original_block": block_wrap}) | |
img = out["img"] | |
else: | |
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask) | |
img = img[:, txt.shape[1]:, ...] | |
img = self.final_layer(img, vec) | |
return img.movedim(-2, -1) * (-1.0) | |