Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import cv2 | |
import numpy as np | |
import torch | |
from torchvision.transforms.functional import normalize | |
try: | |
import torch.cuda as cuda | |
except: | |
cuda = None | |
import comfy.utils | |
import folder_paths | |
import comfy.model_management as model_management | |
from scripts.reactor_logger import logger | |
from r_basicsr.utils.registry import ARCH_REGISTRY | |
from r_chainner import model_loading | |
from reactor_utils import ( | |
tensor2img, | |
img2tensor, | |
set_ort_session, | |
prepare_cropped_face, | |
normalize_cropped_face | |
) | |
if cuda is not None: | |
if cuda.is_available(): | |
providers = ["CUDAExecutionProvider"] | |
else: | |
providers = ["CPUExecutionProvider"] | |
else: | |
providers = ["CPUExecutionProvider"] | |
def get_restored_face(cropped_face, | |
face_restore_model, | |
face_restore_visibility, | |
codeformer_weight, | |
interpolation: str = "Bicubic"): | |
if interpolation == "Bicubic": | |
interpolate = cv2.INTER_CUBIC | |
elif interpolation == "Bilinear": | |
interpolate = cv2.INTER_LINEAR | |
elif interpolation == "Nearest": | |
interpolate = cv2.INTER_NEAREST | |
elif interpolation == "Lanczos": | |
interpolate = cv2.INTER_LANCZOS4 | |
face_size = 512 | |
if "1024" in face_restore_model.lower(): | |
face_size = 1024 | |
elif "2048" in face_restore_model.lower(): | |
face_size = 2048 | |
scale = face_size / cropped_face.shape[0] | |
logger.status(f"Boosting the Face with {face_restore_model} | Face Size is set to {face_size} with Scale Factor = {scale} and '{interpolation}' interpolation") | |
cropped_face = cv2.resize(cropped_face, (face_size, face_size), interpolation=interpolate) | |
# For upscaling the base 128px face, I found bicubic interpolation to be the best compromise targeting antialiasing | |
# and detail preservation. Nearest is predictably unusable, Linear produces too much aliasing, and Lanczos produces | |
# too many hallucinations and artifacts/fringing. | |
model_path = folder_paths.get_full_path("facerestore_models", face_restore_model) | |
device = model_management.get_torch_device() | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
try: | |
with torch.no_grad(): | |
if ".onnx" in face_restore_model: # ONNX models | |
ort_session = set_ort_session(model_path, providers=providers) | |
ort_session_inputs = {} | |
facerestore_model = ort_session | |
for ort_session_input in ort_session.get_inputs(): | |
if ort_session_input.name == "input": | |
cropped_face_prep = prepare_cropped_face(cropped_face) | |
ort_session_inputs[ort_session_input.name] = cropped_face_prep | |
if ort_session_input.name == "weight": | |
weight = np.array([1], dtype=np.double) | |
ort_session_inputs[ort_session_input.name] = weight | |
output = ort_session.run(None, ort_session_inputs)[0][0] | |
restored_face = normalize_cropped_face(output) | |
else: # PTH models | |
if "codeformer" in face_restore_model.lower(): | |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")( | |
dim_embd=512, | |
codebook_size=1024, | |
n_head=8, | |
n_layers=9, | |
connect_list=["32", "64", "128", "256"], | |
).to(device) | |
checkpoint = torch.load(model_path)["params_ema"] | |
codeformer_net.load_state_dict(checkpoint) | |
facerestore_model = codeformer_net.eval() | |
else: | |
sd = comfy.utils.load_torch_file(model_path, safe_load=True) | |
facerestore_model = model_loading.load_state_dict(sd).eval() | |
facerestore_model.to(device) | |
output = facerestore_model(cropped_face_t, w=codeformer_weight)[ | |
0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f"\tFailed inference: {error}", file=sys.stderr) | |
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
if face_restore_visibility < 1: | |
restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility | |
restored_face = restored_face.astype("uint8") | |
return restored_face, scale | |