File size: 12,261 Bytes
de7836d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
'''
Copyright (c) Alibaba, Inc. and its affiliates.
'''
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import cv2
import numpy as np
import math
import traceback
from easydict import EasyDict as edict
import time
from ocr_recog.RecModel import RecModel
import torch
import torch.nn.functional as F
from skimage.transform._geometric import _umeyama as get_sym_mat


def min_bounding_rect(img):
    ret, thresh = cv2.threshold(img, 127, 255, 0)
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if len(contours) == 0:
        print('Bad contours, using fake bbox...')
        return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
    max_contour = max(contours, key=cv2.contourArea)
    rect = cv2.minAreaRect(max_contour)
    box = cv2.boxPoints(rect)
    box = np.int0(box)
    # sort
    x_sorted = sorted(box, key=lambda x: x[0])
    left = x_sorted[:2]
    right = x_sorted[2:]
    left = sorted(left, key=lambda x: x[1])
    (tl, bl) = left
    right = sorted(right, key=lambda x: x[1])
    (tr, br) = right
    if tl[1] > bl[1]:
        (tl, bl) = (bl, tl)
    if tr[1] > br[1]:
        (tr, br) = (br, tr)
    return np.array([tl, tr, br, bl])


def adjust_image(box, img):
    pts1 = np.float32([box[0], box[1], box[2], box[3]])
    width = max(np.linalg.norm(pts1[0]-pts1[1]), np.linalg.norm(pts1[2]-pts1[3]))
    height = max(np.linalg.norm(pts1[0]-pts1[3]), np.linalg.norm(pts1[1]-pts1[2]))
    pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
    # get transform matrix
    M = get_sym_mat(pts1, pts2, estimate_scale=True)
    C, H, W = img.shape
    T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]])
    theta = np.linalg.inv(T @ M @ np.linalg.inv(T))
    theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device)
    grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True)
    result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True)
    result = torch.clamp(result.squeeze(0), 0, 255)
    # crop
    result = result[:, :int(height), :int(width)]
    return result


'''
mask: numpy.ndarray, mask of textual, HWC
src_img: torch.Tensor, source image, CHW
'''
def crop_image(src_img, mask):
    box = min_bounding_rect(mask)
    result = adjust_image(box, src_img)
    if len(result.shape) == 2:
        result = torch.stack([result]*3, axis=-1)
    return result


def create_predictor(model_dir=None, model_lang='ch', is_onnx=False):
    model_file_path = model_dir
    if model_file_path is not None and not os.path.exists(model_file_path):
        raise ValueError("not find model file path {}".format(model_file_path))

    if is_onnx:
        import onnxruntime as ort
        sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])  # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
        return sess
    else:
        if model_lang == 'ch':
            n_class = 6625
        elif model_lang == 'en':
            n_class = 97
        else:
            raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
        rec_config = edict(
            in_channels=3,
            backbone=edict(type='MobileNetV1Enhance', scale=0.5, last_conv_stride=[1, 2], last_pool_type='avg'),
            neck=edict(type='SequenceEncoder', encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True),
            head=edict(type='CTCHead', fc_decay=0.00001, out_channels=n_class, return_feats=True)
        )

        rec_model = RecModel(rec_config)
        if model_file_path is not None:
            rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu"))
            rec_model.eval()
        return rec_model.eval()


def _check_image_file(path):
    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
    return any([path.lower().endswith(e) for e in img_end])


def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))
    if os.path.isfile(img_file) and _check_image_file(img_file):
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            file_path = os.path.join(img_file, single_file)
            if os.path.isfile(file_path) and _check_image_file(file_path):
                imgs_lists.append(file_path)
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    imgs_lists = sorted(imgs_lists)
    return imgs_lists


class TextRecognizer(object):
    def __init__(self, args, predictor):
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_batch_num = args.rec_batch_num
        self.predictor = predictor
        self.chars = self.get_char_dict(args.rec_char_dict_path)
        self.char2id = {x: i for i, x in enumerate(self.chars)}
        self.is_onnx = not isinstance(self.predictor, torch.nn.Module)

    # img: CHW
    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape
        assert imgC == img.shape[0]
        imgW = int((imgH * max_wh_ratio))

        h, w = img.shape[1:]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = torch.nn.functional.interpolate(
            img.unsqueeze(0),
            size=(imgH, resized_w),
            mode='bilinear',
            align_corners=True,
        )
        resized_image /= 255.0
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
        padding_im[:, :, 0:resized_w] = resized_image[0]
        return padding_im

    # img_list: list of tensors with shape chw 0-255
    def pred_imglist(self, img_list, show_debug=False, is_ori=False):
        img_num = len(img_list)
        assert img_num > 0
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[2] / float(img.shape[1]))
        # Sorting can speed up the recognition process
        indices = torch.from_numpy(np.argsort(np.array(width_list)))
        batch_num = self.rec_batch_num
        preds_all = [None] * img_num
        preds_neck_all = [None] * img_num
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []

            imgC, imgH, imgW = self.rec_image_shape[:3]
            max_wh_ratio = imgW / imgH
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[1:]
                if h > w * 1.2:
                    img = img_list[indices[ino]]
                    img = torch.transpose(img, 1, 2).flip(dims=[1])
                    img_list[indices[ino]] = img
                    h, w = img.shape[1:]
                # wh_ratio = w * 1.0 / h
                # max_wh_ratio = max(max_wh_ratio, wh_ratio)  # comment to not use different ratio
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
                norm_img = norm_img.unsqueeze(0)
                norm_img_batch.append(norm_img)
            norm_img_batch = torch.cat(norm_img_batch, dim=0)
            if show_debug:
                for i in range(len(norm_img_batch)):
                    _img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
                    _img = (_img + 0.5)*255
                    _img = _img[:, :, ::-1]
                    file_name = f'{indices[beg_img_no + i]}'
                    file_name = file_name + '_ori' if is_ori else file_name
                    cv2.imwrite(file_name + '.jpg', _img)
            if self.is_onnx:
                input_dict = {}
                input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy()
                outputs = self.predictor.run(None, input_dict)
                preds = {}
                preds['ctc'] = torch.from_numpy(outputs[0])
                preds['ctc_neck'] = [torch.zeros(1)] * img_num
            else:
                preds = self.predictor(norm_img_batch)
            for rno in range(preds['ctc'].shape[0]):
                preds_all[indices[beg_img_no + rno]] = preds['ctc'][rno]
                preds_neck_all[indices[beg_img_no + rno]] = preds['ctc_neck'][rno]

        return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)

    def get_char_dict(self, character_dict_path):
        character_str = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
            for line in lines:
                line = line.decode('utf-8').strip("\n").strip("\r\n")
                character_str.append(line)
        dict_character = list(character_str)
        dict_character = ['sos'] + dict_character + [' ']  # eos is space
        return dict_character

    def get_text(self, order):
        char_list = [self.chars[text_id] for text_id in order]
        return ''.join(char_list)

    def decode(self, mat):
        text_index = mat.detach().cpu().numpy().argmax(axis=1)
        ignored_tokens = [0]
        selection = np.ones(len(text_index), dtype=bool)
        selection[1:] = text_index[1:] != text_index[:-1]
        for ignored_token in ignored_tokens:
            selection &= text_index != ignored_token
        return text_index[selection], np.where(selection)[0]

    def get_ctcloss(self, preds, gt_text, weight):
        if not isinstance(weight, torch.Tensor):
            weight = torch.tensor(weight).to(preds.device)
        ctc_loss = torch.nn.CTCLoss(reduction='none')
        log_probs = preds.log_softmax(dim=2).permute(1, 0, 2)  # NTC-->TNC
        targets = []
        target_lengths = []
        for t in gt_text:
            targets += [self.char2id.get(i, len(self.chars)-1) for i in t]
            target_lengths += [len(t)]
        targets = torch.tensor(targets).to(preds.device)
        target_lengths = torch.tensor(target_lengths).to(preds.device)
        input_lengths = torch.tensor([log_probs.shape[0]]*(log_probs.shape[1])).to(preds.device)
        loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
        loss = loss / input_lengths * weight
        return loss


def main():
    rec_model_dir = "./ocr_weights/ppv3_rec.pth"
    predictor = create_predictor(rec_model_dir)
    args = edict()
    args.rec_image_shape = "3, 48, 320"
    args.rec_char_dict_path = './ocr_weights/ppocr_keys_v1.txt'
    args.rec_batch_num = 6
    text_recognizer = TextRecognizer(args, predictor)
    image_dir = './test_imgs_cn'
    gt_text = ['韩国小馆']*14

    image_file_list = get_image_file_list(image_dir)
    valid_image_file_list = []
    img_list = []

    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            print("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(torch.from_numpy(img).permute(2, 0, 1).float())
    try:
        tic = time.time()
        times = []
        for i in range(10):
            preds, _ = text_recognizer.pred_imglist(img_list)  # get text
            preds_all = preds.softmax(dim=2)
            times += [(time.time()-tic)*1000.]
            tic = time.time()
        print(times)
        print(np.mean(times[1:]) / len(preds_all))
        weight = np.ones(len(gt_text))
        loss = text_recognizer.get_ctcloss(preds, gt_text, weight)
        for i in range(len(valid_image_file_list)):
            pred = preds_all[i]
            order, idx = text_recognizer.decode(pred)
            text = text_recognizer.get_text(order)
            print(f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}')
    except Exception as E:
        print(traceback.format_exc(), E)


if __name__ == "__main__":
    main()