Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,750 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import torch
from .attention import Attention
class CLIPEncoderLayer(torch.nn.Module):
def __init__(self, embed_dim, intermediate_size, num_heads=12, head_dim=64, use_quick_gelu=True):
super().__init__()
self.attn = Attention(q_dim=embed_dim, num_heads=num_heads, head_dim=head_dim, bias_q=True, bias_kv=True, bias_out=True)
self.layer_norm1 = torch.nn.LayerNorm(embed_dim)
self.layer_norm2 = torch.nn.LayerNorm(embed_dim)
self.fc1 = torch.nn.Linear(embed_dim, intermediate_size)
self.fc2 = torch.nn.Linear(intermediate_size, embed_dim)
self.use_quick_gelu = use_quick_gelu
def quickGELU(self, x):
return x * torch.sigmoid(1.702 * x)
def forward(self, hidden_states, attn_mask=None):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.attn(hidden_states, attn_mask=attn_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.fc1(hidden_states)
if self.use_quick_gelu:
hidden_states = self.quickGELU(hidden_states)
else:
hidden_states = torch.nn.functional.gelu(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SDTextEncoder(torch.nn.Module):
def __init__(self, embed_dim=768, vocab_size=49408, max_position_embeddings=77, num_encoder_layers=12, encoder_intermediate_size=3072):
super().__init__()
# token_embedding
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim)
# position_embeds (This is a fixed tensor)
self.position_embeds = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, embed_dim))
# encoders
self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size) for _ in range(num_encoder_layers)])
# attn_mask
self.attn_mask = self.attention_mask(max_position_embeddings)
# final_layer_norm
self.final_layer_norm = torch.nn.LayerNorm(embed_dim)
def attention_mask(self, length):
mask = torch.empty(length, length)
mask.fill_(float("-inf"))
mask.triu_(1)
return mask
def forward(self, input_ids, clip_skip=1):
embeds = self.token_embedding(input_ids) + self.position_embeds
attn_mask = self.attn_mask.to(device=embeds.device, dtype=embeds.dtype)
for encoder_id, encoder in enumerate(self.encoders):
embeds = encoder(embeds, attn_mask=attn_mask)
if encoder_id + clip_skip == len(self.encoders):
break
embeds = self.final_layer_norm(embeds)
return embeds
@staticmethod
def state_dict_converter():
return SDTextEncoderStateDictConverter()
class SDTextEncoderStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"text_model.embeddings.token_embedding.weight": "token_embedding.weight",
"text_model.embeddings.position_embedding.weight": "position_embeds",
"text_model.final_layer_norm.weight": "final_layer_norm.weight",
"text_model.final_layer_norm.bias": "final_layer_norm.bias"
}
attn_rename_dict = {
"self_attn.q_proj": "attn.to_q",
"self_attn.k_proj": "attn.to_k",
"self_attn.v_proj": "attn.to_v",
"self_attn.out_proj": "attn.to_out",
"layer_norm1": "layer_norm1",
"layer_norm2": "layer_norm2",
"mlp.fc1": "fc1",
"mlp.fc2": "fc2",
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if name == "text_model.embeddings.position_embedding.weight":
param = param.reshape((1, param.shape[0], param.shape[1]))
state_dict_[rename_dict[name]] = param
elif name.startswith("text_model.encoder.layers."):
param = state_dict[name]
names = name.split(".")
layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1]
name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail])
state_dict_[name_] = param
return state_dict_
def from_civitai(self, state_dict):
rename_dict = {
"cond_stage_model.transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias": "encoders.0.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.weight": "encoders.0.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.bias": "encoders.0.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.weight": "encoders.0.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.bias": "encoders.0.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.weight": "encoders.0.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.bias": "encoders.0.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.weight": "encoders.0.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias": "encoders.0.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight": "encoders.0.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias": "encoders.0.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight": "encoders.0.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias": "encoders.0.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight": "encoders.0.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias": "encoders.0.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight": "encoders.0.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.bias": "encoders.1.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.weight": "encoders.1.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.bias": "encoders.1.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.weight": "encoders.1.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.bias": "encoders.1.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.weight": "encoders.1.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.bias": "encoders.1.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.weight": "encoders.1.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias": "encoders.1.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight": "encoders.1.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias": "encoders.1.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight": "encoders.1.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias": "encoders.1.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight": "encoders.1.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias": "encoders.1.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight": "encoders.1.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.bias": "encoders.10.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.weight": "encoders.10.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.bias": "encoders.10.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.weight": "encoders.10.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.bias": "encoders.10.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.weight": "encoders.10.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.bias": "encoders.10.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.weight": "encoders.10.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias": "encoders.10.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight": "encoders.10.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias": "encoders.10.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight": "encoders.10.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias": "encoders.10.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight": "encoders.10.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias": "encoders.10.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight": "encoders.10.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.bias": "encoders.11.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.weight": "encoders.11.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.bias": "encoders.11.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.weight": "encoders.11.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.bias": "encoders.11.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "encoders.11.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "encoders.11.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "encoders.11.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "encoders.11.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "encoders.11.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "encoders.11.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "encoders.11.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias": "encoders.11.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight": "encoders.11.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias": "encoders.11.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight": "encoders.11.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.bias": "encoders.2.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.weight": "encoders.2.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.bias": "encoders.2.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.weight": "encoders.2.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.bias": "encoders.2.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "encoders.2.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "encoders.2.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "encoders.2.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "encoders.2.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "encoders.2.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "encoders.2.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "encoders.2.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias": "encoders.2.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight": "encoders.2.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias": "encoders.2.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight": "encoders.2.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.bias": "encoders.3.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.weight": "encoders.3.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias": "encoders.3.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.weight": "encoders.3.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.bias": "encoders.3.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "encoders.3.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "encoders.3.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "encoders.3.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "encoders.3.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "encoders.3.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "encoders.3.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "encoders.3.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias": "encoders.3.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight": "encoders.3.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias": "encoders.3.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight": "encoders.3.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.bias": "encoders.4.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.weight": "encoders.4.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.bias": "encoders.4.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.weight": "encoders.4.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.bias": "encoders.4.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.weight": "encoders.4.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.bias": "encoders.4.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.weight": "encoders.4.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias": "encoders.4.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight": "encoders.4.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias": "encoders.4.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight": "encoders.4.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias": "encoders.4.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight": "encoders.4.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias": "encoders.4.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight": "encoders.4.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.bias": "encoders.5.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.weight": "encoders.5.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.bias": "encoders.5.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.weight": "encoders.5.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.bias": "encoders.5.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.weight": "encoders.5.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.bias": "encoders.5.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.weight": "encoders.5.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias": "encoders.5.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight": "encoders.5.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias": "encoders.5.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight": "encoders.5.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias": "encoders.5.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight": "encoders.5.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias": "encoders.5.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight": "encoders.5.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.bias": "encoders.6.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.weight": "encoders.6.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.bias": "encoders.6.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.weight": "encoders.6.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.bias": "encoders.6.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.weight": "encoders.6.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.bias": "encoders.6.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.weight": "encoders.6.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias": "encoders.6.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight": "encoders.6.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias": "encoders.6.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight": "encoders.6.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias": "encoders.6.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight": "encoders.6.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias": "encoders.6.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight": "encoders.6.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.bias": "encoders.7.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.weight": "encoders.7.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.bias": "encoders.7.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.weight": "encoders.7.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.bias": "encoders.7.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.weight": "encoders.7.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.bias": "encoders.7.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.weight": "encoders.7.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias": "encoders.7.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight": "encoders.7.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias": "encoders.7.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight": "encoders.7.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias": "encoders.7.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight": "encoders.7.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias": "encoders.7.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight": "encoders.7.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.bias": "encoders.8.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.weight": "encoders.8.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.bias": "encoders.8.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.weight": "encoders.8.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.bias": "encoders.8.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.weight": "encoders.8.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.bias": "encoders.8.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.weight": "encoders.8.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias": "encoders.8.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight": "encoders.8.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias": "encoders.8.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight": "encoders.8.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias": "encoders.8.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight": "encoders.8.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias": "encoders.8.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight": "encoders.8.attn.to_v.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.bias": "encoders.9.layer_norm1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.weight": "encoders.9.layer_norm1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.bias": "encoders.9.layer_norm2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.weight": "encoders.9.layer_norm2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.bias": "encoders.9.fc1.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.weight": "encoders.9.fc1.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.bias": "encoders.9.fc2.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.weight": "encoders.9.fc2.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias": "encoders.9.attn.to_k.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight": "encoders.9.attn.to_k.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias": "encoders.9.attn.to_out.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight": "encoders.9.attn.to_out.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias": "encoders.9.attn.to_q.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight": "encoders.9.attn.to_q.weight",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias": "encoders.9.attn.to_v.bias",
"cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight": "encoders.9.attn.to_v.weight",
"cond_stage_model.transformer.text_model.final_layer_norm.bias": "final_layer_norm.bias",
"cond_stage_model.transformer.text_model.final_layer_norm.weight": "final_layer_norm.weight",
"cond_stage_model.transformer.text_model.embeddings.position_embedding.weight": "position_embeds"
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if name == "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight":
param = param.reshape((1, param.shape[0], param.shape[1]))
state_dict_[rename_dict[name]] = param
return state_dict_
|