File size: 10,398 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder, SDXLMotionModel
from ..models.kolors_text_encoder import ChatGLMModel
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDXLPrompter, KolorsPrompter
from ..schedulers import EnhancedDDIMScheduler
from .sdxl_image import SDXLImagePipeline
from .dancer import lets_dance_xl
from typing import List
import torch
from tqdm import tqdm



class SDXLVideoPipeline(SDXLImagePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear")
        self.prompter = SDXLPrompter()
        # models
        self.text_encoder: SDXLTextEncoder = None
        self.text_encoder_2: SDXLTextEncoder2 = None
        self.text_encoder_kolors: ChatGLMModel = None
        self.unet: SDXLUNet = None
        self.vae_decoder: SDXLVAEDecoder = None
        self.vae_encoder: SDXLVAEEncoder = None
        # self.controlnet: MultiControlNetManager = None (TODO)
        self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None
        self.ipadapter: SDXLIpAdapter = None
        self.motion_modules: SDXLMotionModel = None


    def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        # Main models
        self.text_encoder = model_manager.fetch_model("sdxl_text_encoder")
        self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2")
        self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder")
        self.unet = model_manager.fetch_model("sdxl_unet")
        self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
        self.prompter.fetch_models(self.text_encoder)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)

        # ControlNets (TODO)

        # IP-Adapters
        self.ipadapter = model_manager.fetch_model("sdxl_ipadapter")
        self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder")

        # Motion Modules
        self.motion_modules = model_manager.fetch_model("sdxl_motion_modules")
        if self.motion_modules is None:
            self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear")

        # Kolors
        if self.text_encoder_kolors is not None:
            print("Switch to Kolors. The prompter will be replaced.")
            self.prompter = KolorsPrompter()
            self.prompter.fetch_models(self.text_encoder_kolors)
            # The schedulers of AniamteDiff and Kolors are incompatible. We align it with AniamteDiff.
            if self.motion_modules is None:
                self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100)
        else:
            self.prompter.fetch_models(self.text_encoder, self.text_encoder_2)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        pipe = SDXLVideoPipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes)
        return pipe
    

    def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32):
        images = [
            self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            for frame_id in range(latents.shape[0])
        ]
        return images
    

    def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
        latents = []
        for image in processed_images:
            image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
            latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            latents.append(latent.cpu())
        latents = torch.concat(latents, dim=0)
        return latents
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        num_frames=None,
        input_frames=None,
        ipadapter_images=None,
        ipadapter_scale=1.0,
        ipadapter_use_instant_style=False,
        controlnet_frames=None,
        denoising_strength=1.0,
        height=512,
        width=512,
        num_inference_steps=20,
        animatediff_batch_size = 16,
        animatediff_stride = 8,
        unet_batch_size = 1,
        controlnet_batch_size = 1,
        cross_frame_attention = False,
        smoother=None,
        smoother_progress_ids=[],
        tiled=False,
        tile_size=64,
        tile_stride=32,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Tiler parameters, batch size ...
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if self.motion_modules is None:
            noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
        else:
            noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
        if input_frames is None or denoising_strength == 1.0:
            latents = noise
        else:
            latents = self.encode_video(input_frames, **tiler_kwargs)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        latents = latents.to(self.device) # will be deleted for supporting long videos

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
        prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)

        # IP-Adapter
        if ipadapter_images is not None:
            if ipadapter_use_instant_style:
                self.ipadapter.set_less_adapter()
            else:
                self.ipadapter.set_full_adapter()
            ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
            ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
            ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
        else:
            ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}

        # Prepare ControlNets
        if controlnet_frames is not None:
            if isinstance(controlnet_frames[0], list):
                controlnet_frames_ = []
                for processor_id in range(len(controlnet_frames)):
                    controlnet_frames_.append(
                        torch.stack([
                            self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
                            for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
                        ], dim=1)
                    )
                controlnet_frames = torch.concat(controlnet_frames_, dim=0)
            else:
                controlnet_frames = torch.stack([
                    self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
                    for controlnet_frame in progress_bar_cmd(controlnet_frames)
                ], dim=1)
            controlnet_kwargs = {"controlnet_frames": controlnet_frames}
        else:
            controlnet_kwargs = {"controlnet_frames": None}

        # Prepare extra input
        extra_input = self.prepare_extra_input(latents)
        
        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(self.device)

            # Classifier-free guidance
            noise_pred_posi = lets_dance_xl(
                self.unet, motion_modules=self.motion_modules, controlnet=None,
                sample=latents, timestep=timestep,
                **prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **extra_input, **tiler_kwargs,
                device=self.device,
            )
            noise_pred_nega = lets_dance_xl(
                self.unet, motion_modules=self.motion_modules, controlnet=None,
                sample=latents, timestep=timestep,
                **prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **extra_input, **tiler_kwargs,
                device=self.device,
            )
            noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)

            # DDIM and smoother
            if smoother is not None and progress_id in smoother_progress_ids:
                rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
                rendered_frames = self.decode_video(rendered_frames)
                rendered_frames = smoother(rendered_frames, original_frames=input_frames)
                target_latents = self.encode_video(rendered_frames)
                noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
            latents = self.scheduler.step(noise_pred, timestep, latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        output_frames = self.decode_video(latents, **tiler_kwargs)

        # Post-process
        if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
            output_frames = smoother(output_frames, original_frames=input_frames)

        return output_frames