File size: 13,739 Bytes
703e263
 
 
8601520
 
703e263
80985dc
703e263
3690f4e
 
 
 
 
 
 
 
 
2927c6c
3690f4e
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8601520
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import spaces
import os
os.system("pip install -r requirements.txt")
from huggingface_hub import login
login(token=os.getenv('HF_AK'))
from diffsynth import download_models
download_models(["Kolors", "FLUX.1-dev"], downloading_priority=["HuggingFace", "ModelScope"])

def get_file_list(path):
    file_list = []
    for filename in os.listdir(path):
        file_path = os.path.join(path, filename)
        if os.path.isdir(file_path):
            file_list.extend(get_file_list(file_path))
        else:
            file_list.append(file_path)
    return file_list
print([i for i in get_file_list("models") if "cache" not in i])

import gradio as gr
from diffsynth import ModelManager, SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline
import os, torch
from PIL import Image
import numpy as np


config = {
    "model_config": {
        "Stable Diffusion": {
            "model_folder": "models/stable_diffusion",
            "pipeline_class": SDImagePipeline,
            "default_parameters": {
                "cfg_scale": 7.0,
                "height": 512,
                "width": 512,
            }
        },
        "Stable Diffusion XL": {
            "model_folder": "models/stable_diffusion_xl",
            "pipeline_class": SDXLImagePipeline,
            "default_parameters": {
                "cfg_scale": 7.0,
            }
        },
        "Stable Diffusion 3": {
            "model_folder": "models/stable_diffusion_3",
            "pipeline_class": SD3ImagePipeline,
            "default_parameters": {
                "cfg_scale": 7.0,
            }
        },
        "Stable Diffusion XL Turbo": {
            "model_folder": "models/stable_diffusion_xl_turbo",
            "pipeline_class": SDXLImagePipeline,
            "default_parameters": {
                "negative_prompt": "",
                "cfg_scale": 1.0,
                "num_inference_steps": 1,
                "height": 512,
                "width": 512,
            }
        },
        "Kolors": {
            "model_folder": "models/kolors",
            "pipeline_class": SDXLImagePipeline,
            "default_parameters": {
                "cfg_scale": 7.0,
            }
        },
        "HunyuanDiT": {
            "model_folder": "models/HunyuanDiT",
            "pipeline_class": HunyuanDiTImagePipeline,
            "default_parameters": {
                "cfg_scale": 7.0,
            }
        },
        "FLUX": {
            "model_folder": "models/FLUX",
            "pipeline_class": FluxImagePipeline,
            "default_parameters": {
                "cfg_scale": 1.0,
            }
        }
    },
    "max_num_painter_layers": 3,
    "max_num_model_cache": 2,
}


def load_model_list(model_type):
    if model_type is None:
        return []
    folder = config["model_config"][model_type]["model_folder"]
    file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
    if model_type in ["HunyuanDiT", "Kolors", "FLUX"]:
        file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
    file_list = sorted(file_list)
    return file_list


def load_model(model_type, model_path):
    global model_dict
    model_key = f"{model_type}:{model_path}"
    if model_key in model_dict:
        return model_dict[model_key]
    model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path)
    model_manager = ModelManager()
    if model_type == "HunyuanDiT":
        model_manager.load_models([
            os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
            os.path.join(model_path, "mt5/pytorch_model.bin"),
            os.path.join(model_path, "model/pytorch_model_ema.pt"),
            os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
        ])
    elif model_type == "Kolors":
        model_manager.load_models([
            os.path.join(model_path, "text_encoder"),
            os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"),
            os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"),
        ])
    elif model_type == "FLUX":
        model_manager.torch_dtype = torch.bfloat16
        file_list = [
            os.path.join(model_path, "text_encoder/model.safetensors"),
            os.path.join(model_path, "text_encoder_2"),
        ]
        for file_name in os.listdir(model_path):
            if file_name.endswith(".safetensors"):
                file_list.append(os.path.join(model_path, file_name))
        model_manager.load_models(file_list)
    else:
        model_manager.load_model(model_path)
    pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager)
    while len(model_dict) + 1 > config["max_num_model_cache"]:
        key = next(iter(model_dict.keys()))
        model_manager_to_release, _ = model_dict[key]
        model_manager_to_release.to("cpu")
        del model_dict[key]
        torch.cuda.empty_cache()
    model_dict[model_key] = model_manager, pipe
    return model_manager, pipe


model_dict = {}

with gr.Blocks() as app:
    gr.Markdown("# DiffSynth-Studio Painter")
    with gr.Row():
        with gr.Column(scale=382, min_width=100):

            with gr.Accordion(label="Model"):
                model_type = gr.Dropdown(choices=["Kolors", "FLUX"], label="Model type", value="Kolors")
                model_path = gr.Dropdown(choices=["Kolors"], interactive=True, label="Model path", value="Kolors")

                @gr.on(inputs=model_type, outputs=model_path, triggers=model_type.change)
                def model_type_to_model_path(model_type):
                    return gr.Dropdown(choices=load_model_list(model_type))
                
            with gr.Accordion(label="Prompt"):
                prompt = gr.Textbox(label="Prompt", lines=3)
                negative_prompt = gr.Textbox(label="Negative prompt", lines=1)
                cfg_scale = gr.Slider(minimum=1.0, maximum=10.0, value=7.0, step=0.1, interactive=True, label="Classifier-free guidance scale")
                embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.1, interactive=True, label="Embedded guidance scale (only for FLUX)")
            
            with gr.Accordion(label="Image"):
                num_inference_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, interactive=True, label="Inference steps")
                height = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Height")
                width = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Width")
                with gr.Column():
                    use_fixed_seed = gr.Checkbox(value=True, interactive=False, label="Use fixed seed")
                    seed = gr.Number(minimum=0, maximum=10**9, value=0, interactive=True, label="Random seed", show_label=False)

            @gr.on(
                inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
                outputs=[prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
                triggers=model_path.change
            )
            def model_path_to_default_params(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width):
                load_model(model_type, model_path)
                cfg_scale = config["model_config"][model_type]["default_parameters"].get("cfg_scale", cfg_scale)
                embedded_guidance = config["model_config"][model_type]["default_parameters"].get("embedded_guidance", embedded_guidance)
                num_inference_steps = config["model_config"][model_type]["default_parameters"].get("num_inference_steps", num_inference_steps)
                height = config["model_config"][model_type]["default_parameters"].get("height", height)
                width = config["model_config"][model_type]["default_parameters"].get("width", width)
                return prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width
                

        with gr.Column(scale=618, min_width=100):
            with gr.Accordion(label="Painter"):
                enable_local_prompt_list = []
                local_prompt_list = []
                mask_scale_list = []
                canvas_list = []
                for painter_layer_id in range(config["max_num_painter_layers"]):
                    with gr.Tab(label=f"Layer {painter_layer_id}"):
                        enable_local_prompt = gr.Checkbox(label="Enable", value=False, key=f"enable_local_prompt_{painter_layer_id}")
                        local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}")
                        mask_scale = gr.Slider(minimum=0.0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Mask scale", key=f"mask_scale_{painter_layer_id}")
                        canvas = gr.ImageEditor(canvas_size=(512, 1), sources=None, layers=False, interactive=True, image_mode="RGBA",
                                                brush=gr.Brush(default_size=100, default_color="#000000", colors=["#000000"]),
                                                label="Painter", key=f"canvas_{painter_layer_id}")
                        @gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear, enable_local_prompt.change], show_progress="hidden")
                        def resize_canvas(height, width, canvas):
                            h, w = canvas["background"].shape[:2]
                            if h != height or width != w:
                                return np.ones((height, width, 3), dtype=np.uint8) * 255
                            else:
                                return canvas
                        
                        enable_local_prompt_list.append(enable_local_prompt)
                        local_prompt_list.append(local_prompt)
                        mask_scale_list.append(mask_scale)
                        canvas_list.append(canvas)
            with gr.Accordion(label="Results"):
                run_button = gr.Button(value="Generate", variant="primary")
                output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil")
                output_to_painter_button = gr.Button(value="Set as painter's background")
                painter_background = gr.State(None)
                input_background = gr.State(None)
                @gr.on(
                    inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed] + enable_local_prompt_list + local_prompt_list + mask_scale_list + canvas_list,
                    outputs=[output_image],
                    triggers=run_button.click
                )
                @spaces.GPU(duration=60)
                def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed, *args, progress=gr.Progress()):
                    _, pipe = load_model(model_type, model_path)
                    input_params = {
                        "prompt": prompt,
                        "negative_prompt": negative_prompt,
                        "cfg_scale": cfg_scale,
                        "num_inference_steps": num_inference_steps,
                        "height": height,
                        "width": width,
                        "progress_bar_cmd": progress.tqdm,
                    }
                    if isinstance(pipe, FluxImagePipeline):
                        input_params["embedded_guidance"] = embedded_guidance
                    enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list = (
                        args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]],
                        args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]],
                        args[2 * config["max_num_painter_layers"]: 3 * config["max_num_painter_layers"]],
                        args[3 * config["max_num_painter_layers"]: 4 * config["max_num_painter_layers"]]
                    )
                    local_prompts, masks, mask_scales = [], [], []
                    for enable_local_prompt, local_prompt, mask_scale, canvas in zip(
                        enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list
                    ):
                        if enable_local_prompt:
                            local_prompts.append(local_prompt)
                            masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB"))
                            mask_scales.append(mask_scale)
                    input_params.update({
                        "local_prompts": local_prompts,
                        "masks": masks,
                        "mask_scales": mask_scales,
                    })
                    torch.manual_seed(seed)
                    image = pipe(**input_params)
                    return image
                
                @gr.on(inputs=[output_image] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click)
                def send_output_to_painter_background(output_image, *canvas_list):
                    for canvas in canvas_list:
                        h, w = canvas["background"].shape[:2]
                        canvas["background"] = output_image.resize((w, h))
                    return tuple(canvas_list)
app.launch()