Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,565 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from transformers import BertModel, BertConfig, T5EncoderModel, T5Config
import torch
class HunyuanDiTCLIPTextEncoder(BertModel):
def __init__(self):
config = BertConfig(
_name_or_path = "",
architectures = ["BertModel"],
attention_probs_dropout_prob = 0.1,
bos_token_id = 0,
classifier_dropout = None,
directionality = "bidi",
eos_token_id = 2,
hidden_act = "gelu",
hidden_dropout_prob = 0.1,
hidden_size = 1024,
initializer_range = 0.02,
intermediate_size = 4096,
layer_norm_eps = 1e-12,
max_position_embeddings = 512,
model_type = "bert",
num_attention_heads = 16,
num_hidden_layers = 24,
output_past = True,
pad_token_id = 0,
pooler_fc_size = 768,
pooler_num_attention_heads = 12,
pooler_num_fc_layers = 3,
pooler_size_per_head = 128,
pooler_type = "first_token_transform",
position_embedding_type = "absolute",
torch_dtype = "float32",
transformers_version = "4.37.2",
type_vocab_size = 2,
use_cache = True,
vocab_size = 47020
)
super().__init__(config, add_pooling_layer=False)
self.eval()
def forward(self, input_ids, attention_mask, clip_skip=1):
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
past_key_values_length = 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=None,
token_type_ids=None,
inputs_embeds=None,
past_key_values_length=0,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=False,
output_attentions=False,
output_hidden_states=True,
return_dict=True,
)
all_hidden_states = encoder_outputs.hidden_states
prompt_emb = all_hidden_states[-clip_skip]
if clip_skip > 1:
mean, std = all_hidden_states[-1].mean(), all_hidden_states[-1].std()
prompt_emb = (prompt_emb - prompt_emb.mean()) / prompt_emb.std() * std + mean
return prompt_emb
@staticmethod
def state_dict_converter():
return HunyuanDiTCLIPTextEncoderStateDictConverter()
class HunyuanDiTT5TextEncoder(T5EncoderModel):
def __init__(self):
config = T5Config(
_name_or_path = "../HunyuanDiT/t2i/mt5",
architectures = ["MT5ForConditionalGeneration"],
classifier_dropout = 0.0,
d_ff = 5120,
d_kv = 64,
d_model = 2048,
decoder_start_token_id = 0,
dense_act_fn = "gelu_new",
dropout_rate = 0.1,
eos_token_id = 1,
feed_forward_proj = "gated-gelu",
initializer_factor = 1.0,
is_encoder_decoder = True,
is_gated_act = True,
layer_norm_epsilon = 1e-06,
model_type = "t5",
num_decoder_layers = 24,
num_heads = 32,
num_layers = 24,
output_past = True,
pad_token_id = 0,
relative_attention_max_distance = 128,
relative_attention_num_buckets = 32,
tie_word_embeddings = False,
tokenizer_class = "T5Tokenizer",
transformers_version = "4.37.2",
use_cache = True,
vocab_size = 250112
)
super().__init__(config)
self.eval()
def forward(self, input_ids, attention_mask, clip_skip=1):
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
)
prompt_emb = outputs.hidden_states[-clip_skip]
if clip_skip > 1:
mean, std = outputs.hidden_states[-1].mean(), outputs.hidden_states[-1].std()
prompt_emb = (prompt_emb - prompt_emb.mean()) / prompt_emb.std() * std + mean
return prompt_emb
@staticmethod
def state_dict_converter():
return HunyuanDiTT5TextEncoderStateDictConverter()
class HunyuanDiTCLIPTextEncoderStateDictConverter():
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {name[5:]: param for name, param in state_dict.items() if name.startswith("bert.")}
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)
class HunyuanDiTT5TextEncoderStateDictConverter():
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {name: param for name, param in state_dict.items() if name.startswith("encoder.")}
state_dict_["shared.weight"] = state_dict["shared.weight"]
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)
|