Spaces:
Running
on
Zero
Running
on
Zero
File size: 200,456 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 |
import torch, math
from einops import rearrange, repeat
from .sd_unet import Timesteps, PushBlock, PopBlock, Attention, GEGLU, ResnetBlock, AttentionBlock, DownSampler, UpSampler
class TemporalResnetBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5):
super().__init__()
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv3d(in_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0))
if temb_channels is not None:
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
self.conv2 = torch.nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0))
self.nonlinearity = torch.nn.SiLU()
self.conv_shortcut = None
if in_channels != out_channels:
self.conv_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
x = rearrange(hidden_states, "f c h w -> 1 c f h w")
x = self.norm1(x)
x = self.nonlinearity(x)
x = self.conv1(x)
if time_emb is not None:
emb = self.nonlinearity(time_emb)
emb = self.time_emb_proj(emb)
emb = repeat(emb, "b c -> b c f 1 1", f=hidden_states.shape[0])
x = x + emb
x = self.norm2(x)
x = self.nonlinearity(x)
x = self.conv2(x)
if self.conv_shortcut is not None:
hidden_states = self.conv_shortcut(hidden_states)
x = rearrange(x[0], "c f h w -> f c h w")
hidden_states = hidden_states + x
return hidden_states, time_emb, text_emb, res_stack
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TemporalTimesteps(torch.nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class TrainableTemporalTimesteps(torch.nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, num_frames: int):
super().__init__()
timesteps = PositionalID()(num_frames)
embeddings = get_timestep_embedding(timesteps, num_channels, flip_sin_to_cos, downscale_freq_shift)
self.embeddings = torch.nn.Parameter(embeddings)
def forward(self, timesteps):
t_emb = self.embeddings[timesteps]
return t_emb
class PositionalID(torch.nn.Module):
def __init__(self, max_id=25, repeat_length=20):
super().__init__()
self.max_id = max_id
self.repeat_length = repeat_length
def frame_id_to_position_id(self, frame_id):
if frame_id < self.max_id:
position_id = frame_id
else:
position_id = (frame_id - self.max_id) % (self.repeat_length * 2)
if position_id < self.repeat_length:
position_id = self.max_id - 2 - position_id
else:
position_id = self.max_id - 2 * self.repeat_length + position_id
return position_id
def forward(self, num_frames, pivot_frame_id=0):
position_ids = [self.frame_id_to_position_id(abs(i-pivot_frame_id)) for i in range(num_frames)]
position_ids = torch.IntTensor(position_ids)
return position_ids
class TemporalAttentionBlock(torch.nn.Module):
def __init__(self, num_attention_heads, attention_head_dim, in_channels, cross_attention_dim=None, add_positional_conv=None):
super().__init__()
self.positional_embedding_proj = torch.nn.Sequential(
torch.nn.Linear(in_channels, in_channels * 4),
torch.nn.SiLU(),
torch.nn.Linear(in_channels * 4, in_channels)
)
if add_positional_conv is not None:
self.positional_embedding = TrainableTemporalTimesteps(in_channels, True, 0, add_positional_conv)
self.positional_conv = torch.nn.Conv3d(in_channels, in_channels, kernel_size=3, padding=1, padding_mode="reflect")
else:
self.positional_embedding = TemporalTimesteps(in_channels, True, 0)
self.positional_conv = None
self.norm_in = torch.nn.LayerNorm(in_channels)
self.act_fn_in = GEGLU(in_channels, in_channels * 4)
self.ff_in = torch.nn.Linear(in_channels * 4, in_channels)
self.norm1 = torch.nn.LayerNorm(in_channels)
self.attn1 = Attention(
q_dim=in_channels,
num_heads=num_attention_heads,
head_dim=attention_head_dim,
bias_out=True
)
self.norm2 = torch.nn.LayerNorm(in_channels)
self.attn2 = Attention(
q_dim=in_channels,
kv_dim=cross_attention_dim,
num_heads=num_attention_heads,
head_dim=attention_head_dim,
bias_out=True
)
self.norm_out = torch.nn.LayerNorm(in_channels)
self.act_fn_out = GEGLU(in_channels, in_channels * 4)
self.ff_out = torch.nn.Linear(in_channels * 4, in_channels)
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
batch, inner_dim, height, width = hidden_states.shape
pos_emb = torch.arange(batch)
pos_emb = self.positional_embedding(pos_emb).to(dtype=hidden_states.dtype, device=hidden_states.device)
pos_emb = self.positional_embedding_proj(pos_emb)
hidden_states = rearrange(hidden_states, "T C H W -> 1 C T H W") + rearrange(pos_emb, "T C -> 1 C T 1 1")
if self.positional_conv is not None:
hidden_states = self.positional_conv(hidden_states)
hidden_states = rearrange(hidden_states[0], "C T H W -> (H W) T C")
residual = hidden_states
hidden_states = self.norm_in(hidden_states)
hidden_states = self.act_fn_in(hidden_states)
hidden_states = self.ff_in(hidden_states)
hidden_states = hidden_states + residual
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
hidden_states = attn_output + hidden_states
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=text_emb.repeat(height * width, 1))
hidden_states = attn_output + hidden_states
residual = hidden_states
hidden_states = self.norm_out(hidden_states)
hidden_states = self.act_fn_out(hidden_states)
hidden_states = self.ff_out(hidden_states)
hidden_states = hidden_states + residual
hidden_states = hidden_states.reshape(height, width, batch, inner_dim).permute(2, 3, 0, 1)
return hidden_states, time_emb, text_emb, res_stack
class PopMixBlock(torch.nn.Module):
def __init__(self, in_channels=None):
super().__init__()
self.mix_factor = torch.nn.Parameter(torch.Tensor([0.5]))
self.need_proj = in_channels is not None
if self.need_proj:
self.proj = torch.nn.Linear(in_channels, in_channels)
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
res_hidden_states = res_stack.pop()
alpha = torch.sigmoid(self.mix_factor)
hidden_states = alpha * res_hidden_states + (1 - alpha) * hidden_states
if self.need_proj:
hidden_states = hidden_states.permute(0, 2, 3, 1)
hidden_states = self.proj(hidden_states)
hidden_states = hidden_states.permute(0, 3, 1, 2)
res_hidden_states = res_stack.pop()
hidden_states = hidden_states + res_hidden_states
return hidden_states, time_emb, text_emb, res_stack
class SVDUNet(torch.nn.Module):
def __init__(self, add_positional_conv=None):
super().__init__()
self.time_proj = Timesteps(320)
self.time_embedding = torch.nn.Sequential(
torch.nn.Linear(320, 1280),
torch.nn.SiLU(),
torch.nn.Linear(1280, 1280)
)
self.add_time_proj = Timesteps(256)
self.add_time_embedding = torch.nn.Sequential(
torch.nn.Linear(768, 1280),
torch.nn.SiLU(),
torch.nn.Linear(1280, 1280)
)
self.conv_in = torch.nn.Conv2d(8, 320, kernel_size=3, padding=1)
self.blocks = torch.nn.ModuleList([
# CrossAttnDownBlockSpatioTemporal
ResnetBlock(320, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), PushBlock(),
ResnetBlock(320, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), PushBlock(),
DownSampler(320), PushBlock(),
# CrossAttnDownBlockSpatioTemporal
ResnetBlock(320, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), PushBlock(),
ResnetBlock(640, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), PushBlock(),
DownSampler(640), PushBlock(),
# CrossAttnDownBlockSpatioTemporal
ResnetBlock(640, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), PushBlock(),
ResnetBlock(1280, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), PushBlock(),
DownSampler(1280), PushBlock(),
# DownBlockSpatioTemporal
ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(),
ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(),
# UNetMidBlockSpatioTemporal
ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280),
ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
# UpBlockSpatioTemporal
PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
UpSampler(1280),
# CrossAttnUpBlockSpatioTemporal
PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280),
PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280),
PopBlock(), ResnetBlock(1920, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280),
UpSampler(1280),
# CrossAttnUpBlockSpatioTemporal
PopBlock(), ResnetBlock(1920, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640),
PopBlock(), ResnetBlock(1280, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640),
PopBlock(), ResnetBlock(960, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640),
UpSampler(640),
# CrossAttnUpBlockSpatioTemporal
PopBlock(), ResnetBlock(960, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320),
PopBlock(), ResnetBlock(640, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320),
PopBlock(), ResnetBlock(640, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(),
AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320),
])
self.conv_norm_out = torch.nn.GroupNorm(32, 320, eps=1e-05, affine=True)
self.conv_act = torch.nn.SiLU()
self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
def build_mask(self, data, is_bound):
T, C, H, W = data.shape
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
border_width = (T + H + W) // 6
pad = torch.ones_like(t) * border_width
mask = torch.stack([
pad if is_bound[0] else t + 1,
pad if is_bound[1] else T - t,
pad if is_bound[2] else h + 1,
pad if is_bound[3] else H - h,
pad if is_bound[4] else w + 1,
pad if is_bound[5] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
mask = rearrange(mask, "T H W -> T 1 H W")
return mask
def tiled_forward(
self, sample, timestep, encoder_hidden_states, add_time_id,
batch_time=25, batch_height=128, batch_width=128,
stride_time=5, stride_height=64, stride_width=64,
progress_bar=lambda x:x
):
data_device = sample.device
computation_device = self.conv_in.weight.device
torch_dtype = sample.dtype
T, C, H, W = sample.shape
weight = torch.zeros((T, 1, H, W), dtype=torch_dtype, device=data_device)
values = torch.zeros((T, 4, H, W), dtype=torch_dtype, device=data_device)
# Split tasks
tasks = []
for t in range(0, T, stride_time):
for h in range(0, H, stride_height):
for w in range(0, W, stride_width):
if (t-stride_time >= 0 and t-stride_time+batch_time >= T)\
or (h-stride_height >= 0 and h-stride_height+batch_height >= H)\
or (w-stride_width >= 0 and w-stride_width+batch_width >= W):
continue
tasks.append((t, t+batch_time, h, h+batch_height, w, w+batch_width))
# Run
for tl, tr, hl, hr, wl, wr in progress_bar(tasks):
sample_batch = sample[tl:tr, :, hl:hr, wl:wr].to(computation_device)
sample_batch = self.forward(sample_batch, timestep, encoder_hidden_states, add_time_id).to(data_device)
mask = self.build_mask(sample_batch, is_bound=(tl==0, tr>=T, hl==0, hr>=H, wl==0, wr>=W))
values[tl:tr, :, hl:hr, wl:wr] += sample_batch * mask
weight[tl:tr, :, hl:hr, wl:wr] += mask
values /= weight
return values
def forward(self, sample, timestep, encoder_hidden_states, add_time_id, use_gradient_checkpointing=False, **kwargs):
# 1. time
timestep = torch.tensor((timestep,)).to(sample.device)
t_emb = self.time_proj(timestep).to(sample.dtype)
t_emb = self.time_embedding(t_emb)
add_embeds = self.add_time_proj(add_time_id.flatten()).to(sample.dtype)
add_embeds = add_embeds.reshape((-1, 768))
add_embeds = self.add_time_embedding(add_embeds)
time_emb = t_emb + add_embeds
# 2. pre-process
height, width = sample.shape[2], sample.shape[3]
hidden_states = self.conv_in(sample)
text_emb = encoder_hidden_states
res_stack = [hidden_states]
# 3. blocks
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for i, block in enumerate(self.blocks):
if self.training and use_gradient_checkpointing and not (isinstance(block, PushBlock) or isinstance(block, PopBlock) or isinstance(block, PopMixBlock)):
hidden_states, time_emb, text_emb, res_stack = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, time_emb, text_emb, res_stack,
use_reentrant=False,
)
else:
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
# 4. output
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
@staticmethod
def state_dict_converter():
return SVDUNetStateDictConverter()
class SVDUNetStateDictConverter:
def __init__(self):
pass
def get_block_name(self, names):
if names[0] in ["down_blocks", "mid_block", "up_blocks"]:
if names[4] in ["norm", "proj_in"]:
return ".".join(names[:4] + ["transformer_blocks"])
elif names[4] in ["time_pos_embed"]:
return ".".join(names[:4] + ["temporal_transformer_blocks"])
elif names[4] in ["proj_out"]:
return ".".join(names[:4] + ["time_mixer"])
else:
return ".".join(names[:5])
return ""
def from_diffusers(self, state_dict):
rename_dict = {
"time_embedding.linear_1": "time_embedding.0",
"time_embedding.linear_2": "time_embedding.2",
"add_embedding.linear_1": "add_time_embedding.0",
"add_embedding.linear_2": "add_time_embedding.2",
"conv_in": "conv_in",
"conv_norm_out": "conv_norm_out",
"conv_out": "conv_out",
}
blocks_rename_dict = [
"down_blocks.0.resnets.0.spatial_res_block", None, "down_blocks.0.resnets.0.temporal_res_block", "down_blocks.0.resnets.0.time_mixer", None,
"down_blocks.0.attentions.0.transformer_blocks", None, "down_blocks.0.attentions.0.temporal_transformer_blocks", "down_blocks.0.attentions.0.time_mixer", None,
"down_blocks.0.resnets.1.spatial_res_block", None, "down_blocks.0.resnets.1.temporal_res_block", "down_blocks.0.resnets.1.time_mixer", None,
"down_blocks.0.attentions.1.transformer_blocks", None, "down_blocks.0.attentions.1.temporal_transformer_blocks", "down_blocks.0.attentions.1.time_mixer", None,
"down_blocks.0.downsamplers.0.conv", None,
"down_blocks.1.resnets.0.spatial_res_block", None, "down_blocks.1.resnets.0.temporal_res_block", "down_blocks.1.resnets.0.time_mixer", None,
"down_blocks.1.attentions.0.transformer_blocks", None, "down_blocks.1.attentions.0.temporal_transformer_blocks", "down_blocks.1.attentions.0.time_mixer", None,
"down_blocks.1.resnets.1.spatial_res_block", None, "down_blocks.1.resnets.1.temporal_res_block", "down_blocks.1.resnets.1.time_mixer", None,
"down_blocks.1.attentions.1.transformer_blocks", None, "down_blocks.1.attentions.1.temporal_transformer_blocks", "down_blocks.1.attentions.1.time_mixer", None,
"down_blocks.1.downsamplers.0.conv", None,
"down_blocks.2.resnets.0.spatial_res_block", None, "down_blocks.2.resnets.0.temporal_res_block", "down_blocks.2.resnets.0.time_mixer", None,
"down_blocks.2.attentions.0.transformer_blocks", None, "down_blocks.2.attentions.0.temporal_transformer_blocks", "down_blocks.2.attentions.0.time_mixer", None,
"down_blocks.2.resnets.1.spatial_res_block", None, "down_blocks.2.resnets.1.temporal_res_block", "down_blocks.2.resnets.1.time_mixer", None,
"down_blocks.2.attentions.1.transformer_blocks", None, "down_blocks.2.attentions.1.temporal_transformer_blocks", "down_blocks.2.attentions.1.time_mixer", None,
"down_blocks.2.downsamplers.0.conv", None,
"down_blocks.3.resnets.0.spatial_res_block", None, "down_blocks.3.resnets.0.temporal_res_block", "down_blocks.3.resnets.0.time_mixer", None,
"down_blocks.3.resnets.1.spatial_res_block", None, "down_blocks.3.resnets.1.temporal_res_block", "down_blocks.3.resnets.1.time_mixer", None,
"mid_block.mid_block.resnets.0.spatial_res_block", None, "mid_block.mid_block.resnets.0.temporal_res_block", "mid_block.mid_block.resnets.0.time_mixer", None,
"mid_block.mid_block.attentions.0.transformer_blocks", None, "mid_block.mid_block.attentions.0.temporal_transformer_blocks", "mid_block.mid_block.attentions.0.time_mixer",
"mid_block.mid_block.resnets.1.spatial_res_block", None, "mid_block.mid_block.resnets.1.temporal_res_block", "mid_block.mid_block.resnets.1.time_mixer",
None, "up_blocks.0.resnets.0.spatial_res_block", None, "up_blocks.0.resnets.0.temporal_res_block", "up_blocks.0.resnets.0.time_mixer",
None, "up_blocks.0.resnets.1.spatial_res_block", None, "up_blocks.0.resnets.1.temporal_res_block", "up_blocks.0.resnets.1.time_mixer",
None, "up_blocks.0.resnets.2.spatial_res_block", None, "up_blocks.0.resnets.2.temporal_res_block", "up_blocks.0.resnets.2.time_mixer",
"up_blocks.0.upsamplers.0.conv",
None, "up_blocks.1.resnets.0.spatial_res_block", None, "up_blocks.1.resnets.0.temporal_res_block", "up_blocks.1.resnets.0.time_mixer", None,
"up_blocks.1.attentions.0.transformer_blocks", None, "up_blocks.1.attentions.0.temporal_transformer_blocks", "up_blocks.1.attentions.0.time_mixer",
None, "up_blocks.1.resnets.1.spatial_res_block", None, "up_blocks.1.resnets.1.temporal_res_block", "up_blocks.1.resnets.1.time_mixer", None,
"up_blocks.1.attentions.1.transformer_blocks", None, "up_blocks.1.attentions.1.temporal_transformer_blocks", "up_blocks.1.attentions.1.time_mixer",
None, "up_blocks.1.resnets.2.spatial_res_block", None, "up_blocks.1.resnets.2.temporal_res_block", "up_blocks.1.resnets.2.time_mixer", None,
"up_blocks.1.attentions.2.transformer_blocks", None, "up_blocks.1.attentions.2.temporal_transformer_blocks", "up_blocks.1.attentions.2.time_mixer",
"up_blocks.1.upsamplers.0.conv",
None, "up_blocks.2.resnets.0.spatial_res_block", None, "up_blocks.2.resnets.0.temporal_res_block", "up_blocks.2.resnets.0.time_mixer", None,
"up_blocks.2.attentions.0.transformer_blocks", None, "up_blocks.2.attentions.0.temporal_transformer_blocks", "up_blocks.2.attentions.0.time_mixer",
None, "up_blocks.2.resnets.1.spatial_res_block", None, "up_blocks.2.resnets.1.temporal_res_block", "up_blocks.2.resnets.1.time_mixer", None,
"up_blocks.2.attentions.1.transformer_blocks", None, "up_blocks.2.attentions.1.temporal_transformer_blocks", "up_blocks.2.attentions.1.time_mixer",
None, "up_blocks.2.resnets.2.spatial_res_block", None, "up_blocks.2.resnets.2.temporal_res_block", "up_blocks.2.resnets.2.time_mixer", None,
"up_blocks.2.attentions.2.transformer_blocks", None, "up_blocks.2.attentions.2.temporal_transformer_blocks", "up_blocks.2.attentions.2.time_mixer",
"up_blocks.2.upsamplers.0.conv",
None, "up_blocks.3.resnets.0.spatial_res_block", None, "up_blocks.3.resnets.0.temporal_res_block", "up_blocks.3.resnets.0.time_mixer", None,
"up_blocks.3.attentions.0.transformer_blocks", None, "up_blocks.3.attentions.0.temporal_transformer_blocks", "up_blocks.3.attentions.0.time_mixer",
None, "up_blocks.3.resnets.1.spatial_res_block", None, "up_blocks.3.resnets.1.temporal_res_block", "up_blocks.3.resnets.1.time_mixer", None,
"up_blocks.3.attentions.1.transformer_blocks", None, "up_blocks.3.attentions.1.temporal_transformer_blocks", "up_blocks.3.attentions.1.time_mixer",
None, "up_blocks.3.resnets.2.spatial_res_block", None, "up_blocks.3.resnets.2.temporal_res_block", "up_blocks.3.resnets.2.time_mixer", None,
"up_blocks.3.attentions.2.transformer_blocks", None, "up_blocks.3.attentions.2.temporal_transformer_blocks", "up_blocks.3.attentions.2.time_mixer",
]
blocks_rename_dict = {i:j for j,i in enumerate(blocks_rename_dict) if i is not None}
state_dict_ = {}
for name, param in sorted(state_dict.items()):
names = name.split(".")
if names[0] == "mid_block":
names = ["mid_block"] + names
if names[-1] in ["weight", "bias"]:
name_prefix = ".".join(names[:-1])
if name_prefix in rename_dict:
state_dict_[rename_dict[name_prefix] + "." + names[-1]] = param
else:
block_name = self.get_block_name(names)
if "resnets" in block_name and block_name in blocks_rename_dict:
rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[5:])
state_dict_[rename] = param
elif ("downsamplers" in block_name or "upsamplers" in block_name) and block_name in blocks_rename_dict:
rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[-2:])
state_dict_[rename] = param
elif "attentions" in block_name and block_name in blocks_rename_dict:
attention_id = names[5]
if "transformer_blocks" in names:
suffix_dict = {
"attn1.to_out.0": "attn1.to_out",
"attn2.to_out.0": "attn2.to_out",
"ff.net.0.proj": "act_fn.proj",
"ff.net.2": "ff",
}
suffix = ".".join(names[6:-1])
suffix = suffix_dict.get(suffix, suffix)
rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "transformer_blocks", attention_id, suffix, names[-1]])
elif "temporal_transformer_blocks" in names:
suffix_dict = {
"attn1.to_out.0": "attn1.to_out",
"attn2.to_out.0": "attn2.to_out",
"ff_in.net.0.proj": "act_fn_in.proj",
"ff_in.net.2": "ff_in",
"ff.net.0.proj": "act_fn_out.proj",
"ff.net.2": "ff_out",
"norm3": "norm_out",
}
suffix = ".".join(names[6:-1])
suffix = suffix_dict.get(suffix, suffix)
rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]])
elif "time_mixer" in block_name:
rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "proj", names[-1]])
else:
suffix_dict = {
"linear_1": "positional_embedding_proj.0",
"linear_2": "positional_embedding_proj.2",
}
suffix = names[-2]
suffix = suffix_dict.get(suffix, suffix)
rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]])
state_dict_[rename] = param
else:
print(name)
else:
block_name = self.get_block_name(names)
if len(block_name)>0 and block_name in blocks_rename_dict:
rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), names[-1]])
state_dict_[rename] = param
return state_dict_
def from_civitai(self, state_dict, add_positional_conv=None):
rename_dict = {
"model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias",
"model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight",
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias",
"model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight",
"model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias",
"model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight",
"model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias",
"model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight",
"model.diffusion_model.input_blocks.1.0.time_mixer.mix_factor": "blocks.3.mix_factor",
"model.diffusion_model.input_blocks.1.0.time_stack.emb_layers.1.bias": "blocks.2.time_emb_proj.bias",
"model.diffusion_model.input_blocks.1.0.time_stack.emb_layers.1.weight": "blocks.2.time_emb_proj.weight",
"model.diffusion_model.input_blocks.1.0.time_stack.in_layers.0.bias": "blocks.2.norm1.bias",
"model.diffusion_model.input_blocks.1.0.time_stack.in_layers.0.weight": "blocks.2.norm1.weight",
"model.diffusion_model.input_blocks.1.0.time_stack.in_layers.2.bias": "blocks.2.conv1.bias",
"model.diffusion_model.input_blocks.1.0.time_stack.in_layers.2.weight": "blocks.2.conv1.weight",
"model.diffusion_model.input_blocks.1.0.time_stack.out_layers.0.bias": "blocks.2.norm2.bias",
"model.diffusion_model.input_blocks.1.0.time_stack.out_layers.0.weight": "blocks.2.norm2.weight",
"model.diffusion_model.input_blocks.1.0.time_stack.out_layers.3.bias": "blocks.2.conv2.bias",
"model.diffusion_model.input_blocks.1.0.time_stack.out_layers.3.weight": "blocks.2.conv2.weight",
"model.diffusion_model.input_blocks.1.1.norm.bias": "blocks.5.norm.bias",
"model.diffusion_model.input_blocks.1.1.norm.weight": "blocks.5.norm.weight",
"model.diffusion_model.input_blocks.1.1.proj_in.bias": "blocks.5.proj_in.bias",
"model.diffusion_model.input_blocks.1.1.proj_in.weight": "blocks.5.proj_in.weight",
"model.diffusion_model.input_blocks.1.1.proj_out.bias": "blocks.8.proj.bias",
"model.diffusion_model.input_blocks.1.1.proj_out.weight": "blocks.8.proj.weight",
"model.diffusion_model.input_blocks.1.1.time_mixer.mix_factor": "blocks.8.mix_factor",
"model.diffusion_model.input_blocks.1.1.time_pos_embed.0.bias": "blocks.7.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.1.1.time_pos_embed.0.weight": "blocks.7.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.1.1.time_pos_embed.2.bias": "blocks.7.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.1.1.time_pos_embed.2.weight": "blocks.7.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_k.weight": "blocks.7.attn1.to_k.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_out.0.bias": "blocks.7.attn1.to_out.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_out.0.weight": "blocks.7.attn1.to_out.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_q.weight": "blocks.7.attn1.to_q.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_v.weight": "blocks.7.attn1.to_v.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_k.weight": "blocks.7.attn2.to_k.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_out.0.bias": "blocks.7.attn2.to_out.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_out.0.weight": "blocks.7.attn2.to_out.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_q.weight": "blocks.7.attn2.to_q.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_v.weight": "blocks.7.attn2.to_v.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.0.proj.bias": "blocks.7.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.0.proj.weight": "blocks.7.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.2.bias": "blocks.7.ff_out.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.2.weight": "blocks.7.ff_out.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.7.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.7.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.2.bias": "blocks.7.ff_in.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.2.weight": "blocks.7.ff_in.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm1.bias": "blocks.7.norm1.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm1.weight": "blocks.7.norm1.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm2.bias": "blocks.7.norm2.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm2.weight": "blocks.7.norm2.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm3.bias": "blocks.7.norm_out.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm3.weight": "blocks.7.norm_out.weight",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm_in.bias": "blocks.7.norm_in.bias",
"model.diffusion_model.input_blocks.1.1.time_stack.0.norm_in.weight": "blocks.7.norm_in.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.5.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.5.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.5.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.5.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.5.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.5.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.5.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.5.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.5.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.5.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.5.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.5.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.5.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.5.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.5.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.5.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.5.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.5.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.5.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.5.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "blocks.66.time_emb_proj.bias",
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "blocks.66.time_emb_proj.weight",
"model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "blocks.66.norm1.bias",
"model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "blocks.66.norm1.weight",
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "blocks.66.conv1.bias",
"model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "blocks.66.conv1.weight",
"model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "blocks.66.norm2.bias",
"model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "blocks.66.norm2.weight",
"model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "blocks.66.conv2.bias",
"model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "blocks.66.conv2.weight",
"model.diffusion_model.input_blocks.10.0.time_mixer.mix_factor": "blocks.69.mix_factor",
"model.diffusion_model.input_blocks.10.0.time_stack.emb_layers.1.bias": "blocks.68.time_emb_proj.bias",
"model.diffusion_model.input_blocks.10.0.time_stack.emb_layers.1.weight": "blocks.68.time_emb_proj.weight",
"model.diffusion_model.input_blocks.10.0.time_stack.in_layers.0.bias": "blocks.68.norm1.bias",
"model.diffusion_model.input_blocks.10.0.time_stack.in_layers.0.weight": "blocks.68.norm1.weight",
"model.diffusion_model.input_blocks.10.0.time_stack.in_layers.2.bias": "blocks.68.conv1.bias",
"model.diffusion_model.input_blocks.10.0.time_stack.in_layers.2.weight": "blocks.68.conv1.weight",
"model.diffusion_model.input_blocks.10.0.time_stack.out_layers.0.bias": "blocks.68.norm2.bias",
"model.diffusion_model.input_blocks.10.0.time_stack.out_layers.0.weight": "blocks.68.norm2.weight",
"model.diffusion_model.input_blocks.10.0.time_stack.out_layers.3.bias": "blocks.68.conv2.bias",
"model.diffusion_model.input_blocks.10.0.time_stack.out_layers.3.weight": "blocks.68.conv2.weight",
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "blocks.71.time_emb_proj.bias",
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "blocks.71.time_emb_proj.weight",
"model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "blocks.71.norm1.bias",
"model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "blocks.71.norm1.weight",
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "blocks.71.conv1.bias",
"model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "blocks.71.conv1.weight",
"model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "blocks.71.norm2.bias",
"model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "blocks.71.norm2.weight",
"model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "blocks.71.conv2.bias",
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "blocks.71.conv2.weight",
"model.diffusion_model.input_blocks.11.0.time_mixer.mix_factor": "blocks.74.mix_factor",
"model.diffusion_model.input_blocks.11.0.time_stack.emb_layers.1.bias": "blocks.73.time_emb_proj.bias",
"model.diffusion_model.input_blocks.11.0.time_stack.emb_layers.1.weight": "blocks.73.time_emb_proj.weight",
"model.diffusion_model.input_blocks.11.0.time_stack.in_layers.0.bias": "blocks.73.norm1.bias",
"model.diffusion_model.input_blocks.11.0.time_stack.in_layers.0.weight": "blocks.73.norm1.weight",
"model.diffusion_model.input_blocks.11.0.time_stack.in_layers.2.bias": "blocks.73.conv1.bias",
"model.diffusion_model.input_blocks.11.0.time_stack.in_layers.2.weight": "blocks.73.conv1.weight",
"model.diffusion_model.input_blocks.11.0.time_stack.out_layers.0.bias": "blocks.73.norm2.bias",
"model.diffusion_model.input_blocks.11.0.time_stack.out_layers.0.weight": "blocks.73.norm2.weight",
"model.diffusion_model.input_blocks.11.0.time_stack.out_layers.3.bias": "blocks.73.conv2.bias",
"model.diffusion_model.input_blocks.11.0.time_stack.out_layers.3.weight": "blocks.73.conv2.weight",
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.10.time_emb_proj.bias",
"model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.10.time_emb_proj.weight",
"model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.10.norm1.bias",
"model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.10.norm1.weight",
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.10.conv1.bias",
"model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.10.conv1.weight",
"model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.10.norm2.bias",
"model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.10.norm2.weight",
"model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.10.conv2.bias",
"model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.10.conv2.weight",
"model.diffusion_model.input_blocks.2.0.time_mixer.mix_factor": "blocks.13.mix_factor",
"model.diffusion_model.input_blocks.2.0.time_stack.emb_layers.1.bias": "blocks.12.time_emb_proj.bias",
"model.diffusion_model.input_blocks.2.0.time_stack.emb_layers.1.weight": "blocks.12.time_emb_proj.weight",
"model.diffusion_model.input_blocks.2.0.time_stack.in_layers.0.bias": "blocks.12.norm1.bias",
"model.diffusion_model.input_blocks.2.0.time_stack.in_layers.0.weight": "blocks.12.norm1.weight",
"model.diffusion_model.input_blocks.2.0.time_stack.in_layers.2.bias": "blocks.12.conv1.bias",
"model.diffusion_model.input_blocks.2.0.time_stack.in_layers.2.weight": "blocks.12.conv1.weight",
"model.diffusion_model.input_blocks.2.0.time_stack.out_layers.0.bias": "blocks.12.norm2.bias",
"model.diffusion_model.input_blocks.2.0.time_stack.out_layers.0.weight": "blocks.12.norm2.weight",
"model.diffusion_model.input_blocks.2.0.time_stack.out_layers.3.bias": "blocks.12.conv2.bias",
"model.diffusion_model.input_blocks.2.0.time_stack.out_layers.3.weight": "blocks.12.conv2.weight",
"model.diffusion_model.input_blocks.2.1.norm.bias": "blocks.15.norm.bias",
"model.diffusion_model.input_blocks.2.1.norm.weight": "blocks.15.norm.weight",
"model.diffusion_model.input_blocks.2.1.proj_in.bias": "blocks.15.proj_in.bias",
"model.diffusion_model.input_blocks.2.1.proj_in.weight": "blocks.15.proj_in.weight",
"model.diffusion_model.input_blocks.2.1.proj_out.bias": "blocks.18.proj.bias",
"model.diffusion_model.input_blocks.2.1.proj_out.weight": "blocks.18.proj.weight",
"model.diffusion_model.input_blocks.2.1.time_mixer.mix_factor": "blocks.18.mix_factor",
"model.diffusion_model.input_blocks.2.1.time_pos_embed.0.bias": "blocks.17.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.2.1.time_pos_embed.0.weight": "blocks.17.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.2.1.time_pos_embed.2.bias": "blocks.17.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.2.1.time_pos_embed.2.weight": "blocks.17.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_k.weight": "blocks.17.attn1.to_k.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_out.0.bias": "blocks.17.attn1.to_out.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_out.0.weight": "blocks.17.attn1.to_out.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_q.weight": "blocks.17.attn1.to_q.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_v.weight": "blocks.17.attn1.to_v.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_k.weight": "blocks.17.attn2.to_k.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_out.0.bias": "blocks.17.attn2.to_out.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_out.0.weight": "blocks.17.attn2.to_out.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_q.weight": "blocks.17.attn2.to_q.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_v.weight": "blocks.17.attn2.to_v.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.0.proj.bias": "blocks.17.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.0.proj.weight": "blocks.17.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.2.bias": "blocks.17.ff_out.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.2.weight": "blocks.17.ff_out.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.17.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.17.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.2.bias": "blocks.17.ff_in.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.2.weight": "blocks.17.ff_in.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm1.bias": "blocks.17.norm1.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm1.weight": "blocks.17.norm1.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm2.bias": "blocks.17.norm2.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm2.weight": "blocks.17.norm2.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm3.bias": "blocks.17.norm_out.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm3.weight": "blocks.17.norm_out.weight",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm_in.bias": "blocks.17.norm_in.bias",
"model.diffusion_model.input_blocks.2.1.time_stack.0.norm_in.weight": "blocks.17.norm_in.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.15.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.15.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.15.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.15.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.15.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.15.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.15.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.15.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.15.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.15.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.15.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.15.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.15.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.15.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.15.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.15.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.15.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.15.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.15.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.15.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.3.0.op.bias": "blocks.20.conv.bias",
"model.diffusion_model.input_blocks.3.0.op.weight": "blocks.20.conv.weight",
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.22.time_emb_proj.bias",
"model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.22.time_emb_proj.weight",
"model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.22.norm1.bias",
"model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.22.norm1.weight",
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.22.conv1.bias",
"model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.22.conv1.weight",
"model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.22.norm2.bias",
"model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.22.norm2.weight",
"model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.22.conv2.bias",
"model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.22.conv2.weight",
"model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.22.conv_shortcut.bias",
"model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.22.conv_shortcut.weight",
"model.diffusion_model.input_blocks.4.0.time_mixer.mix_factor": "blocks.25.mix_factor",
"model.diffusion_model.input_blocks.4.0.time_stack.emb_layers.1.bias": "blocks.24.time_emb_proj.bias",
"model.diffusion_model.input_blocks.4.0.time_stack.emb_layers.1.weight": "blocks.24.time_emb_proj.weight",
"model.diffusion_model.input_blocks.4.0.time_stack.in_layers.0.bias": "blocks.24.norm1.bias",
"model.diffusion_model.input_blocks.4.0.time_stack.in_layers.0.weight": "blocks.24.norm1.weight",
"model.diffusion_model.input_blocks.4.0.time_stack.in_layers.2.bias": "blocks.24.conv1.bias",
"model.diffusion_model.input_blocks.4.0.time_stack.in_layers.2.weight": "blocks.24.conv1.weight",
"model.diffusion_model.input_blocks.4.0.time_stack.out_layers.0.bias": "blocks.24.norm2.bias",
"model.diffusion_model.input_blocks.4.0.time_stack.out_layers.0.weight": "blocks.24.norm2.weight",
"model.diffusion_model.input_blocks.4.0.time_stack.out_layers.3.bias": "blocks.24.conv2.bias",
"model.diffusion_model.input_blocks.4.0.time_stack.out_layers.3.weight": "blocks.24.conv2.weight",
"model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.27.norm.bias",
"model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.27.norm.weight",
"model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.27.proj_in.bias",
"model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.27.proj_in.weight",
"model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.30.proj.bias",
"model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.30.proj.weight",
"model.diffusion_model.input_blocks.4.1.time_mixer.mix_factor": "blocks.30.mix_factor",
"model.diffusion_model.input_blocks.4.1.time_pos_embed.0.bias": "blocks.29.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.4.1.time_pos_embed.0.weight": "blocks.29.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.4.1.time_pos_embed.2.bias": "blocks.29.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.4.1.time_pos_embed.2.weight": "blocks.29.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_k.weight": "blocks.29.attn1.to_k.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_out.0.bias": "blocks.29.attn1.to_out.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_out.0.weight": "blocks.29.attn1.to_out.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_q.weight": "blocks.29.attn1.to_q.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_v.weight": "blocks.29.attn1.to_v.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_k.weight": "blocks.29.attn2.to_k.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_out.0.bias": "blocks.29.attn2.to_out.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_out.0.weight": "blocks.29.attn2.to_out.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_q.weight": "blocks.29.attn2.to_q.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_v.weight": "blocks.29.attn2.to_v.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.0.proj.bias": "blocks.29.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.0.proj.weight": "blocks.29.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.2.bias": "blocks.29.ff_out.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.2.weight": "blocks.29.ff_out.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.29.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.29.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.2.bias": "blocks.29.ff_in.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.2.weight": "blocks.29.ff_in.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm1.bias": "blocks.29.norm1.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm1.weight": "blocks.29.norm1.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm2.bias": "blocks.29.norm2.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm2.weight": "blocks.29.norm2.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm3.bias": "blocks.29.norm_out.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm3.weight": "blocks.29.norm_out.weight",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm_in.bias": "blocks.29.norm_in.bias",
"model.diffusion_model.input_blocks.4.1.time_stack.0.norm_in.weight": "blocks.29.norm_in.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.27.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.27.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.27.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.27.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.27.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.27.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.27.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.27.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.27.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.27.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.27.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.27.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.27.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.27.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.27.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.27.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.27.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.27.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.27.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.27.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.32.time_emb_proj.bias",
"model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.32.time_emb_proj.weight",
"model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.32.norm1.bias",
"model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.32.norm1.weight",
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.32.conv1.bias",
"model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.32.conv1.weight",
"model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.32.norm2.bias",
"model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.32.norm2.weight",
"model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.32.conv2.bias",
"model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.32.conv2.weight",
"model.diffusion_model.input_blocks.5.0.time_mixer.mix_factor": "blocks.35.mix_factor",
"model.diffusion_model.input_blocks.5.0.time_stack.emb_layers.1.bias": "blocks.34.time_emb_proj.bias",
"model.diffusion_model.input_blocks.5.0.time_stack.emb_layers.1.weight": "blocks.34.time_emb_proj.weight",
"model.diffusion_model.input_blocks.5.0.time_stack.in_layers.0.bias": "blocks.34.norm1.bias",
"model.diffusion_model.input_blocks.5.0.time_stack.in_layers.0.weight": "blocks.34.norm1.weight",
"model.diffusion_model.input_blocks.5.0.time_stack.in_layers.2.bias": "blocks.34.conv1.bias",
"model.diffusion_model.input_blocks.5.0.time_stack.in_layers.2.weight": "blocks.34.conv1.weight",
"model.diffusion_model.input_blocks.5.0.time_stack.out_layers.0.bias": "blocks.34.norm2.bias",
"model.diffusion_model.input_blocks.5.0.time_stack.out_layers.0.weight": "blocks.34.norm2.weight",
"model.diffusion_model.input_blocks.5.0.time_stack.out_layers.3.bias": "blocks.34.conv2.bias",
"model.diffusion_model.input_blocks.5.0.time_stack.out_layers.3.weight": "blocks.34.conv2.weight",
"model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.37.norm.bias",
"model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.37.norm.weight",
"model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.37.proj_in.bias",
"model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.37.proj_in.weight",
"model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.40.proj.bias",
"model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.40.proj.weight",
"model.diffusion_model.input_blocks.5.1.time_mixer.mix_factor": "blocks.40.mix_factor",
"model.diffusion_model.input_blocks.5.1.time_pos_embed.0.bias": "blocks.39.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.5.1.time_pos_embed.0.weight": "blocks.39.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.5.1.time_pos_embed.2.bias": "blocks.39.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.5.1.time_pos_embed.2.weight": "blocks.39.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_k.weight": "blocks.39.attn1.to_k.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_out.0.bias": "blocks.39.attn1.to_out.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_out.0.weight": "blocks.39.attn1.to_out.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_q.weight": "blocks.39.attn1.to_q.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_v.weight": "blocks.39.attn1.to_v.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_k.weight": "blocks.39.attn2.to_k.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_out.0.bias": "blocks.39.attn2.to_out.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_out.0.weight": "blocks.39.attn2.to_out.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_q.weight": "blocks.39.attn2.to_q.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_v.weight": "blocks.39.attn2.to_v.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.0.proj.bias": "blocks.39.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.0.proj.weight": "blocks.39.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.2.bias": "blocks.39.ff_out.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.2.weight": "blocks.39.ff_out.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.39.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.39.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.2.bias": "blocks.39.ff_in.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.2.weight": "blocks.39.ff_in.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm1.bias": "blocks.39.norm1.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm1.weight": "blocks.39.norm1.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm2.bias": "blocks.39.norm2.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm2.weight": "blocks.39.norm2.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm3.bias": "blocks.39.norm_out.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm3.weight": "blocks.39.norm_out.weight",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm_in.bias": "blocks.39.norm_in.bias",
"model.diffusion_model.input_blocks.5.1.time_stack.0.norm_in.weight": "blocks.39.norm_in.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.37.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.37.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.37.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.37.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.37.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.37.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.37.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.37.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.37.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.37.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.37.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.37.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.37.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.37.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.37.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.37.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.37.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.37.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.37.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.37.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.6.0.op.bias": "blocks.42.conv.bias",
"model.diffusion_model.input_blocks.6.0.op.weight": "blocks.42.conv.weight",
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.44.time_emb_proj.bias",
"model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.44.time_emb_proj.weight",
"model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.44.norm1.bias",
"model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.44.norm1.weight",
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.44.conv1.bias",
"model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.44.conv1.weight",
"model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.44.norm2.bias",
"model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.44.norm2.weight",
"model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.44.conv2.bias",
"model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.44.conv2.weight",
"model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.44.conv_shortcut.bias",
"model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.44.conv_shortcut.weight",
"model.diffusion_model.input_blocks.7.0.time_mixer.mix_factor": "blocks.47.mix_factor",
"model.diffusion_model.input_blocks.7.0.time_stack.emb_layers.1.bias": "blocks.46.time_emb_proj.bias",
"model.diffusion_model.input_blocks.7.0.time_stack.emb_layers.1.weight": "blocks.46.time_emb_proj.weight",
"model.diffusion_model.input_blocks.7.0.time_stack.in_layers.0.bias": "blocks.46.norm1.bias",
"model.diffusion_model.input_blocks.7.0.time_stack.in_layers.0.weight": "blocks.46.norm1.weight",
"model.diffusion_model.input_blocks.7.0.time_stack.in_layers.2.bias": "blocks.46.conv1.bias",
"model.diffusion_model.input_blocks.7.0.time_stack.in_layers.2.weight": "blocks.46.conv1.weight",
"model.diffusion_model.input_blocks.7.0.time_stack.out_layers.0.bias": "blocks.46.norm2.bias",
"model.diffusion_model.input_blocks.7.0.time_stack.out_layers.0.weight": "blocks.46.norm2.weight",
"model.diffusion_model.input_blocks.7.0.time_stack.out_layers.3.bias": "blocks.46.conv2.bias",
"model.diffusion_model.input_blocks.7.0.time_stack.out_layers.3.weight": "blocks.46.conv2.weight",
"model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.49.norm.bias",
"model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.49.norm.weight",
"model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.49.proj_in.bias",
"model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.49.proj_in.weight",
"model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.52.proj.bias",
"model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.52.proj.weight",
"model.diffusion_model.input_blocks.7.1.time_mixer.mix_factor": "blocks.52.mix_factor",
"model.diffusion_model.input_blocks.7.1.time_pos_embed.0.bias": "blocks.51.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.7.1.time_pos_embed.0.weight": "blocks.51.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.7.1.time_pos_embed.2.bias": "blocks.51.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.7.1.time_pos_embed.2.weight": "blocks.51.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_k.weight": "blocks.51.attn1.to_k.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_out.0.bias": "blocks.51.attn1.to_out.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_out.0.weight": "blocks.51.attn1.to_out.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_q.weight": "blocks.51.attn1.to_q.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_v.weight": "blocks.51.attn1.to_v.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_k.weight": "blocks.51.attn2.to_k.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_out.0.bias": "blocks.51.attn2.to_out.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_out.0.weight": "blocks.51.attn2.to_out.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_q.weight": "blocks.51.attn2.to_q.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_v.weight": "blocks.51.attn2.to_v.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.0.proj.bias": "blocks.51.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.0.proj.weight": "blocks.51.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.2.bias": "blocks.51.ff_out.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.2.weight": "blocks.51.ff_out.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.51.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.51.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.2.bias": "blocks.51.ff_in.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.2.weight": "blocks.51.ff_in.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm1.bias": "blocks.51.norm1.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm1.weight": "blocks.51.norm1.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm2.bias": "blocks.51.norm2.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm2.weight": "blocks.51.norm2.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm3.bias": "blocks.51.norm_out.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm3.weight": "blocks.51.norm_out.weight",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm_in.bias": "blocks.51.norm_in.bias",
"model.diffusion_model.input_blocks.7.1.time_stack.0.norm_in.weight": "blocks.51.norm_in.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.49.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.49.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.49.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.49.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.49.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.49.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.49.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.49.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.49.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.49.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.49.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.49.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.49.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.49.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.49.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.49.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.49.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.49.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.49.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.49.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.54.time_emb_proj.bias",
"model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.54.time_emb_proj.weight",
"model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.54.norm1.bias",
"model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.54.norm1.weight",
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.54.conv1.bias",
"model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.54.conv1.weight",
"model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.54.norm2.bias",
"model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.54.norm2.weight",
"model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.54.conv2.bias",
"model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.54.conv2.weight",
"model.diffusion_model.input_blocks.8.0.time_mixer.mix_factor": "blocks.57.mix_factor",
"model.diffusion_model.input_blocks.8.0.time_stack.emb_layers.1.bias": "blocks.56.time_emb_proj.bias",
"model.diffusion_model.input_blocks.8.0.time_stack.emb_layers.1.weight": "blocks.56.time_emb_proj.weight",
"model.diffusion_model.input_blocks.8.0.time_stack.in_layers.0.bias": "blocks.56.norm1.bias",
"model.diffusion_model.input_blocks.8.0.time_stack.in_layers.0.weight": "blocks.56.norm1.weight",
"model.diffusion_model.input_blocks.8.0.time_stack.in_layers.2.bias": "blocks.56.conv1.bias",
"model.diffusion_model.input_blocks.8.0.time_stack.in_layers.2.weight": "blocks.56.conv1.weight",
"model.diffusion_model.input_blocks.8.0.time_stack.out_layers.0.bias": "blocks.56.norm2.bias",
"model.diffusion_model.input_blocks.8.0.time_stack.out_layers.0.weight": "blocks.56.norm2.weight",
"model.diffusion_model.input_blocks.8.0.time_stack.out_layers.3.bias": "blocks.56.conv2.bias",
"model.diffusion_model.input_blocks.8.0.time_stack.out_layers.3.weight": "blocks.56.conv2.weight",
"model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.59.norm.bias",
"model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.59.norm.weight",
"model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.59.proj_in.bias",
"model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.59.proj_in.weight",
"model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.62.proj.bias",
"model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.62.proj.weight",
"model.diffusion_model.input_blocks.8.1.time_mixer.mix_factor": "blocks.62.mix_factor",
"model.diffusion_model.input_blocks.8.1.time_pos_embed.0.bias": "blocks.61.positional_embedding_proj.0.bias",
"model.diffusion_model.input_blocks.8.1.time_pos_embed.0.weight": "blocks.61.positional_embedding_proj.0.weight",
"model.diffusion_model.input_blocks.8.1.time_pos_embed.2.bias": "blocks.61.positional_embedding_proj.2.bias",
"model.diffusion_model.input_blocks.8.1.time_pos_embed.2.weight": "blocks.61.positional_embedding_proj.2.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_k.weight": "blocks.61.attn1.to_k.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_out.0.bias": "blocks.61.attn1.to_out.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_out.0.weight": "blocks.61.attn1.to_out.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_q.weight": "blocks.61.attn1.to_q.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_v.weight": "blocks.61.attn1.to_v.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_k.weight": "blocks.61.attn2.to_k.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_out.0.bias": "blocks.61.attn2.to_out.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_out.0.weight": "blocks.61.attn2.to_out.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_q.weight": "blocks.61.attn2.to_q.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_v.weight": "blocks.61.attn2.to_v.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.0.proj.bias": "blocks.61.act_fn_out.proj.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.0.proj.weight": "blocks.61.act_fn_out.proj.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.2.bias": "blocks.61.ff_out.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.2.weight": "blocks.61.ff_out.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.61.act_fn_in.proj.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.61.act_fn_in.proj.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.2.bias": "blocks.61.ff_in.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.2.weight": "blocks.61.ff_in.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm1.bias": "blocks.61.norm1.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm1.weight": "blocks.61.norm1.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm2.bias": "blocks.61.norm2.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm2.weight": "blocks.61.norm2.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm3.bias": "blocks.61.norm_out.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm3.weight": "blocks.61.norm_out.weight",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm_in.bias": "blocks.61.norm_in.bias",
"model.diffusion_model.input_blocks.8.1.time_stack.0.norm_in.weight": "blocks.61.norm_in.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.59.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.59.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.59.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.59.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.59.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.59.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.59.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.59.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.59.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.59.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.59.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.59.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.59.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.59.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.59.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.59.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.59.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.59.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.59.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.59.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.9.0.op.bias": "blocks.64.conv.bias",
"model.diffusion_model.input_blocks.9.0.op.weight": "blocks.64.conv.weight",
"model.diffusion_model.label_emb.0.0.bias": "add_time_embedding.0.bias",
"model.diffusion_model.label_emb.0.0.weight": "add_time_embedding.0.weight",
"model.diffusion_model.label_emb.0.2.bias": "add_time_embedding.2.bias",
"model.diffusion_model.label_emb.0.2.weight": "add_time_embedding.2.weight",
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.76.time_emb_proj.bias",
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.76.time_emb_proj.weight",
"model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.76.norm1.bias",
"model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.76.norm1.weight",
"model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.76.conv1.bias",
"model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.76.conv1.weight",
"model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.76.norm2.bias",
"model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.76.norm2.weight",
"model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.76.conv2.bias",
"model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.76.conv2.weight",
"model.diffusion_model.middle_block.0.time_mixer.mix_factor": "blocks.79.mix_factor",
"model.diffusion_model.middle_block.0.time_stack.emb_layers.1.bias": "blocks.78.time_emb_proj.bias",
"model.diffusion_model.middle_block.0.time_stack.emb_layers.1.weight": "blocks.78.time_emb_proj.weight",
"model.diffusion_model.middle_block.0.time_stack.in_layers.0.bias": "blocks.78.norm1.bias",
"model.diffusion_model.middle_block.0.time_stack.in_layers.0.weight": "blocks.78.norm1.weight",
"model.diffusion_model.middle_block.0.time_stack.in_layers.2.bias": "blocks.78.conv1.bias",
"model.diffusion_model.middle_block.0.time_stack.in_layers.2.weight": "blocks.78.conv1.weight",
"model.diffusion_model.middle_block.0.time_stack.out_layers.0.bias": "blocks.78.norm2.bias",
"model.diffusion_model.middle_block.0.time_stack.out_layers.0.weight": "blocks.78.norm2.weight",
"model.diffusion_model.middle_block.0.time_stack.out_layers.3.bias": "blocks.78.conv2.bias",
"model.diffusion_model.middle_block.0.time_stack.out_layers.3.weight": "blocks.78.conv2.weight",
"model.diffusion_model.middle_block.1.norm.bias": "blocks.81.norm.bias",
"model.diffusion_model.middle_block.1.norm.weight": "blocks.81.norm.weight",
"model.diffusion_model.middle_block.1.proj_in.bias": "blocks.81.proj_in.bias",
"model.diffusion_model.middle_block.1.proj_in.weight": "blocks.81.proj_in.weight",
"model.diffusion_model.middle_block.1.proj_out.bias": "blocks.84.proj.bias",
"model.diffusion_model.middle_block.1.proj_out.weight": "blocks.84.proj.weight",
"model.diffusion_model.middle_block.1.time_mixer.mix_factor": "blocks.84.mix_factor",
"model.diffusion_model.middle_block.1.time_pos_embed.0.bias": "blocks.83.positional_embedding_proj.0.bias",
"model.diffusion_model.middle_block.1.time_pos_embed.0.weight": "blocks.83.positional_embedding_proj.0.weight",
"model.diffusion_model.middle_block.1.time_pos_embed.2.bias": "blocks.83.positional_embedding_proj.2.bias",
"model.diffusion_model.middle_block.1.time_pos_embed.2.weight": "blocks.83.positional_embedding_proj.2.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn1.to_k.weight": "blocks.83.attn1.to_k.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn1.to_out.0.bias": "blocks.83.attn1.to_out.bias",
"model.diffusion_model.middle_block.1.time_stack.0.attn1.to_out.0.weight": "blocks.83.attn1.to_out.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn1.to_q.weight": "blocks.83.attn1.to_q.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn1.to_v.weight": "blocks.83.attn1.to_v.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn2.to_k.weight": "blocks.83.attn2.to_k.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn2.to_out.0.bias": "blocks.83.attn2.to_out.bias",
"model.diffusion_model.middle_block.1.time_stack.0.attn2.to_out.0.weight": "blocks.83.attn2.to_out.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn2.to_q.weight": "blocks.83.attn2.to_q.weight",
"model.diffusion_model.middle_block.1.time_stack.0.attn2.to_v.weight": "blocks.83.attn2.to_v.weight",
"model.diffusion_model.middle_block.1.time_stack.0.ff.net.0.proj.bias": "blocks.83.act_fn_out.proj.bias",
"model.diffusion_model.middle_block.1.time_stack.0.ff.net.0.proj.weight": "blocks.83.act_fn_out.proj.weight",
"model.diffusion_model.middle_block.1.time_stack.0.ff.net.2.bias": "blocks.83.ff_out.bias",
"model.diffusion_model.middle_block.1.time_stack.0.ff.net.2.weight": "blocks.83.ff_out.weight",
"model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.83.act_fn_in.proj.bias",
"model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.83.act_fn_in.proj.weight",
"model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.2.bias": "blocks.83.ff_in.bias",
"model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.2.weight": "blocks.83.ff_in.weight",
"model.diffusion_model.middle_block.1.time_stack.0.norm1.bias": "blocks.83.norm1.bias",
"model.diffusion_model.middle_block.1.time_stack.0.norm1.weight": "blocks.83.norm1.weight",
"model.diffusion_model.middle_block.1.time_stack.0.norm2.bias": "blocks.83.norm2.bias",
"model.diffusion_model.middle_block.1.time_stack.0.norm2.weight": "blocks.83.norm2.weight",
"model.diffusion_model.middle_block.1.time_stack.0.norm3.bias": "blocks.83.norm_out.bias",
"model.diffusion_model.middle_block.1.time_stack.0.norm3.weight": "blocks.83.norm_out.weight",
"model.diffusion_model.middle_block.1.time_stack.0.norm_in.bias": "blocks.83.norm_in.bias",
"model.diffusion_model.middle_block.1.time_stack.0.norm_in.weight": "blocks.83.norm_in.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.81.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.81.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.81.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.81.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.81.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.81.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.81.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.81.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.81.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.81.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.81.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.81.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.81.transformer_blocks.0.ff.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.81.transformer_blocks.0.ff.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.81.transformer_blocks.0.norm1.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.81.transformer_blocks.0.norm1.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.81.transformer_blocks.0.norm2.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.81.transformer_blocks.0.norm2.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.81.transformer_blocks.0.norm3.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.81.transformer_blocks.0.norm3.weight",
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.85.time_emb_proj.bias",
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.85.time_emb_proj.weight",
"model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.85.norm1.bias",
"model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.85.norm1.weight",
"model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.85.conv1.bias",
"model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.85.conv1.weight",
"model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.85.norm2.bias",
"model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.85.norm2.weight",
"model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.85.conv2.bias",
"model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.85.conv2.weight",
"model.diffusion_model.middle_block.2.time_mixer.mix_factor": "blocks.88.mix_factor",
"model.diffusion_model.middle_block.2.time_stack.emb_layers.1.bias": "blocks.87.time_emb_proj.bias",
"model.diffusion_model.middle_block.2.time_stack.emb_layers.1.weight": "blocks.87.time_emb_proj.weight",
"model.diffusion_model.middle_block.2.time_stack.in_layers.0.bias": "blocks.87.norm1.bias",
"model.diffusion_model.middle_block.2.time_stack.in_layers.0.weight": "blocks.87.norm1.weight",
"model.diffusion_model.middle_block.2.time_stack.in_layers.2.bias": "blocks.87.conv1.bias",
"model.diffusion_model.middle_block.2.time_stack.in_layers.2.weight": "blocks.87.conv1.weight",
"model.diffusion_model.middle_block.2.time_stack.out_layers.0.bias": "blocks.87.norm2.bias",
"model.diffusion_model.middle_block.2.time_stack.out_layers.0.weight": "blocks.87.norm2.weight",
"model.diffusion_model.middle_block.2.time_stack.out_layers.3.bias": "blocks.87.conv2.bias",
"model.diffusion_model.middle_block.2.time_stack.out_layers.3.weight": "blocks.87.conv2.weight",
"model.diffusion_model.out.0.bias": "conv_norm_out.bias",
"model.diffusion_model.out.0.weight": "conv_norm_out.weight",
"model.diffusion_model.out.2.bias": "conv_out.bias",
"model.diffusion_model.out.2.weight": "conv_out.weight",
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.90.time_emb_proj.bias",
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.90.time_emb_proj.weight",
"model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.90.norm1.bias",
"model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.90.norm1.weight",
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.90.conv1.bias",
"model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.90.conv1.weight",
"model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.90.norm2.bias",
"model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.90.norm2.weight",
"model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.90.conv2.bias",
"model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.90.conv2.weight",
"model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.90.conv_shortcut.bias",
"model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.90.conv_shortcut.weight",
"model.diffusion_model.output_blocks.0.0.time_mixer.mix_factor": "blocks.93.mix_factor",
"model.diffusion_model.output_blocks.0.0.time_stack.emb_layers.1.bias": "blocks.92.time_emb_proj.bias",
"model.diffusion_model.output_blocks.0.0.time_stack.emb_layers.1.weight": "blocks.92.time_emb_proj.weight",
"model.diffusion_model.output_blocks.0.0.time_stack.in_layers.0.bias": "blocks.92.norm1.bias",
"model.diffusion_model.output_blocks.0.0.time_stack.in_layers.0.weight": "blocks.92.norm1.weight",
"model.diffusion_model.output_blocks.0.0.time_stack.in_layers.2.bias": "blocks.92.conv1.bias",
"model.diffusion_model.output_blocks.0.0.time_stack.in_layers.2.weight": "blocks.92.conv1.weight",
"model.diffusion_model.output_blocks.0.0.time_stack.out_layers.0.bias": "blocks.92.norm2.bias",
"model.diffusion_model.output_blocks.0.0.time_stack.out_layers.0.weight": "blocks.92.norm2.weight",
"model.diffusion_model.output_blocks.0.0.time_stack.out_layers.3.bias": "blocks.92.conv2.bias",
"model.diffusion_model.output_blocks.0.0.time_stack.out_layers.3.weight": "blocks.92.conv2.weight",
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.95.time_emb_proj.bias",
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.95.time_emb_proj.weight",
"model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.95.norm1.bias",
"model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.95.norm1.weight",
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.95.conv1.bias",
"model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.95.conv1.weight",
"model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.95.norm2.bias",
"model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.95.norm2.weight",
"model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.95.conv2.bias",
"model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.95.conv2.weight",
"model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.95.conv_shortcut.bias",
"model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.95.conv_shortcut.weight",
"model.diffusion_model.output_blocks.1.0.time_mixer.mix_factor": "blocks.98.mix_factor",
"model.diffusion_model.output_blocks.1.0.time_stack.emb_layers.1.bias": "blocks.97.time_emb_proj.bias",
"model.diffusion_model.output_blocks.1.0.time_stack.emb_layers.1.weight": "blocks.97.time_emb_proj.weight",
"model.diffusion_model.output_blocks.1.0.time_stack.in_layers.0.bias": "blocks.97.norm1.bias",
"model.diffusion_model.output_blocks.1.0.time_stack.in_layers.0.weight": "blocks.97.norm1.weight",
"model.diffusion_model.output_blocks.1.0.time_stack.in_layers.2.bias": "blocks.97.conv1.bias",
"model.diffusion_model.output_blocks.1.0.time_stack.in_layers.2.weight": "blocks.97.conv1.weight",
"model.diffusion_model.output_blocks.1.0.time_stack.out_layers.0.bias": "blocks.97.norm2.bias",
"model.diffusion_model.output_blocks.1.0.time_stack.out_layers.0.weight": "blocks.97.norm2.weight",
"model.diffusion_model.output_blocks.1.0.time_stack.out_layers.3.bias": "blocks.97.conv2.bias",
"model.diffusion_model.output_blocks.1.0.time_stack.out_layers.3.weight": "blocks.97.conv2.weight",
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "blocks.178.time_emb_proj.bias",
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "blocks.178.time_emb_proj.weight",
"model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "blocks.178.norm1.bias",
"model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "blocks.178.norm1.weight",
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "blocks.178.conv1.bias",
"model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "blocks.178.conv1.weight",
"model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "blocks.178.norm2.bias",
"model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "blocks.178.norm2.weight",
"model.diffusion_model.output_blocks.10.0.out_layers.3.bias": "blocks.178.conv2.bias",
"model.diffusion_model.output_blocks.10.0.out_layers.3.weight": "blocks.178.conv2.weight",
"model.diffusion_model.output_blocks.10.0.skip_connection.bias": "blocks.178.conv_shortcut.bias",
"model.diffusion_model.output_blocks.10.0.skip_connection.weight": "blocks.178.conv_shortcut.weight",
"model.diffusion_model.output_blocks.10.0.time_mixer.mix_factor": "blocks.181.mix_factor",
"model.diffusion_model.output_blocks.10.0.time_stack.emb_layers.1.bias": "blocks.180.time_emb_proj.bias",
"model.diffusion_model.output_blocks.10.0.time_stack.emb_layers.1.weight": "blocks.180.time_emb_proj.weight",
"model.diffusion_model.output_blocks.10.0.time_stack.in_layers.0.bias": "blocks.180.norm1.bias",
"model.diffusion_model.output_blocks.10.0.time_stack.in_layers.0.weight": "blocks.180.norm1.weight",
"model.diffusion_model.output_blocks.10.0.time_stack.in_layers.2.bias": "blocks.180.conv1.bias",
"model.diffusion_model.output_blocks.10.0.time_stack.in_layers.2.weight": "blocks.180.conv1.weight",
"model.diffusion_model.output_blocks.10.0.time_stack.out_layers.0.bias": "blocks.180.norm2.bias",
"model.diffusion_model.output_blocks.10.0.time_stack.out_layers.0.weight": "blocks.180.norm2.weight",
"model.diffusion_model.output_blocks.10.0.time_stack.out_layers.3.bias": "blocks.180.conv2.bias",
"model.diffusion_model.output_blocks.10.0.time_stack.out_layers.3.weight": "blocks.180.conv2.weight",
"model.diffusion_model.output_blocks.10.1.norm.bias": "blocks.183.norm.bias",
"model.diffusion_model.output_blocks.10.1.norm.weight": "blocks.183.norm.weight",
"model.diffusion_model.output_blocks.10.1.proj_in.bias": "blocks.183.proj_in.bias",
"model.diffusion_model.output_blocks.10.1.proj_in.weight": "blocks.183.proj_in.weight",
"model.diffusion_model.output_blocks.10.1.proj_out.bias": "blocks.186.proj.bias",
"model.diffusion_model.output_blocks.10.1.proj_out.weight": "blocks.186.proj.weight",
"model.diffusion_model.output_blocks.10.1.time_mixer.mix_factor": "blocks.186.mix_factor",
"model.diffusion_model.output_blocks.10.1.time_pos_embed.0.bias": "blocks.185.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.10.1.time_pos_embed.0.weight": "blocks.185.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.10.1.time_pos_embed.2.bias": "blocks.185.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.10.1.time_pos_embed.2.weight": "blocks.185.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_k.weight": "blocks.185.attn1.to_k.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_out.0.bias": "blocks.185.attn1.to_out.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_out.0.weight": "blocks.185.attn1.to_out.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_q.weight": "blocks.185.attn1.to_q.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_v.weight": "blocks.185.attn1.to_v.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_k.weight": "blocks.185.attn2.to_k.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_out.0.bias": "blocks.185.attn2.to_out.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_out.0.weight": "blocks.185.attn2.to_out.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_q.weight": "blocks.185.attn2.to_q.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_v.weight": "blocks.185.attn2.to_v.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.0.proj.bias": "blocks.185.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.0.proj.weight": "blocks.185.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.2.bias": "blocks.185.ff_out.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.2.weight": "blocks.185.ff_out.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.185.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.185.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.2.bias": "blocks.185.ff_in.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.2.weight": "blocks.185.ff_in.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm1.bias": "blocks.185.norm1.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm1.weight": "blocks.185.norm1.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm2.bias": "blocks.185.norm2.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm2.weight": "blocks.185.norm2.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm3.bias": "blocks.185.norm_out.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm3.weight": "blocks.185.norm_out.weight",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm_in.bias": "blocks.185.norm_in.bias",
"model.diffusion_model.output_blocks.10.1.time_stack.0.norm_in.weight": "blocks.185.norm_in.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight": "blocks.183.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.183.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.183.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight": "blocks.183.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight": "blocks.183.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight": "blocks.183.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.183.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.183.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight": "blocks.183.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight": "blocks.183.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.183.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.183.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias": "blocks.183.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight": "blocks.183.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias": "blocks.183.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight": "blocks.183.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias": "blocks.183.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "blocks.183.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "blocks.183.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "blocks.183.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "blocks.188.time_emb_proj.bias",
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "blocks.188.time_emb_proj.weight",
"model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "blocks.188.norm1.bias",
"model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "blocks.188.norm1.weight",
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "blocks.188.conv1.bias",
"model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "blocks.188.conv1.weight",
"model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "blocks.188.norm2.bias",
"model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "blocks.188.norm2.weight",
"model.diffusion_model.output_blocks.11.0.out_layers.3.bias": "blocks.188.conv2.bias",
"model.diffusion_model.output_blocks.11.0.out_layers.3.weight": "blocks.188.conv2.weight",
"model.diffusion_model.output_blocks.11.0.skip_connection.bias": "blocks.188.conv_shortcut.bias",
"model.diffusion_model.output_blocks.11.0.skip_connection.weight": "blocks.188.conv_shortcut.weight",
"model.diffusion_model.output_blocks.11.0.time_mixer.mix_factor": "blocks.191.mix_factor",
"model.diffusion_model.output_blocks.11.0.time_stack.emb_layers.1.bias": "blocks.190.time_emb_proj.bias",
"model.diffusion_model.output_blocks.11.0.time_stack.emb_layers.1.weight": "blocks.190.time_emb_proj.weight",
"model.diffusion_model.output_blocks.11.0.time_stack.in_layers.0.bias": "blocks.190.norm1.bias",
"model.diffusion_model.output_blocks.11.0.time_stack.in_layers.0.weight": "blocks.190.norm1.weight",
"model.diffusion_model.output_blocks.11.0.time_stack.in_layers.2.bias": "blocks.190.conv1.bias",
"model.diffusion_model.output_blocks.11.0.time_stack.in_layers.2.weight": "blocks.190.conv1.weight",
"model.diffusion_model.output_blocks.11.0.time_stack.out_layers.0.bias": "blocks.190.norm2.bias",
"model.diffusion_model.output_blocks.11.0.time_stack.out_layers.0.weight": "blocks.190.norm2.weight",
"model.diffusion_model.output_blocks.11.0.time_stack.out_layers.3.bias": "blocks.190.conv2.bias",
"model.diffusion_model.output_blocks.11.0.time_stack.out_layers.3.weight": "blocks.190.conv2.weight",
"model.diffusion_model.output_blocks.11.1.norm.bias": "blocks.193.norm.bias",
"model.diffusion_model.output_blocks.11.1.norm.weight": "blocks.193.norm.weight",
"model.diffusion_model.output_blocks.11.1.proj_in.bias": "blocks.193.proj_in.bias",
"model.diffusion_model.output_blocks.11.1.proj_in.weight": "blocks.193.proj_in.weight",
"model.diffusion_model.output_blocks.11.1.proj_out.bias": "blocks.196.proj.bias",
"model.diffusion_model.output_blocks.11.1.proj_out.weight": "blocks.196.proj.weight",
"model.diffusion_model.output_blocks.11.1.time_mixer.mix_factor": "blocks.196.mix_factor",
"model.diffusion_model.output_blocks.11.1.time_pos_embed.0.bias": "blocks.195.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.11.1.time_pos_embed.0.weight": "blocks.195.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.11.1.time_pos_embed.2.bias": "blocks.195.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.11.1.time_pos_embed.2.weight": "blocks.195.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_k.weight": "blocks.195.attn1.to_k.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_out.0.bias": "blocks.195.attn1.to_out.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_out.0.weight": "blocks.195.attn1.to_out.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_q.weight": "blocks.195.attn1.to_q.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_v.weight": "blocks.195.attn1.to_v.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_k.weight": "blocks.195.attn2.to_k.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_out.0.bias": "blocks.195.attn2.to_out.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_out.0.weight": "blocks.195.attn2.to_out.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_q.weight": "blocks.195.attn2.to_q.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_v.weight": "blocks.195.attn2.to_v.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.0.proj.bias": "blocks.195.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.0.proj.weight": "blocks.195.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.2.bias": "blocks.195.ff_out.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.2.weight": "blocks.195.ff_out.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.195.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.195.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.2.bias": "blocks.195.ff_in.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.2.weight": "blocks.195.ff_in.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm1.bias": "blocks.195.norm1.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm1.weight": "blocks.195.norm1.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm2.bias": "blocks.195.norm2.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm2.weight": "blocks.195.norm2.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm3.bias": "blocks.195.norm_out.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm3.weight": "blocks.195.norm_out.weight",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm_in.bias": "blocks.195.norm_in.bias",
"model.diffusion_model.output_blocks.11.1.time_stack.0.norm_in.weight": "blocks.195.norm_in.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight": "blocks.193.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.193.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.193.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight": "blocks.193.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight": "blocks.193.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight": "blocks.193.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.193.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.193.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight": "blocks.193.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight": "blocks.193.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.193.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.193.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias": "blocks.193.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight": "blocks.193.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias": "blocks.193.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight": "blocks.193.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias": "blocks.193.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "blocks.193.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "blocks.193.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "blocks.193.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.100.time_emb_proj.bias",
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.100.time_emb_proj.weight",
"model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.100.norm1.bias",
"model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.100.norm1.weight",
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.100.conv1.bias",
"model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.100.conv1.weight",
"model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.100.norm2.bias",
"model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.100.norm2.weight",
"model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.100.conv2.bias",
"model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.100.conv2.weight",
"model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.100.conv_shortcut.bias",
"model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.100.conv_shortcut.weight",
"model.diffusion_model.output_blocks.2.0.time_mixer.mix_factor": "blocks.103.mix_factor",
"model.diffusion_model.output_blocks.2.0.time_stack.emb_layers.1.bias": "blocks.102.time_emb_proj.bias",
"model.diffusion_model.output_blocks.2.0.time_stack.emb_layers.1.weight": "blocks.102.time_emb_proj.weight",
"model.diffusion_model.output_blocks.2.0.time_stack.in_layers.0.bias": "blocks.102.norm1.bias",
"model.diffusion_model.output_blocks.2.0.time_stack.in_layers.0.weight": "blocks.102.norm1.weight",
"model.diffusion_model.output_blocks.2.0.time_stack.in_layers.2.bias": "blocks.102.conv1.bias",
"model.diffusion_model.output_blocks.2.0.time_stack.in_layers.2.weight": "blocks.102.conv1.weight",
"model.diffusion_model.output_blocks.2.0.time_stack.out_layers.0.bias": "blocks.102.norm2.bias",
"model.diffusion_model.output_blocks.2.0.time_stack.out_layers.0.weight": "blocks.102.norm2.weight",
"model.diffusion_model.output_blocks.2.0.time_stack.out_layers.3.bias": "blocks.102.conv2.bias",
"model.diffusion_model.output_blocks.2.0.time_stack.out_layers.3.weight": "blocks.102.conv2.weight",
"model.diffusion_model.output_blocks.2.1.conv.bias": "blocks.104.conv.bias",
"model.diffusion_model.output_blocks.2.1.conv.weight": "blocks.104.conv.weight",
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.106.time_emb_proj.bias",
"model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.106.time_emb_proj.weight",
"model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.106.norm1.bias",
"model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.106.norm1.weight",
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.106.conv1.bias",
"model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.106.conv1.weight",
"model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.106.norm2.bias",
"model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.106.norm2.weight",
"model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.106.conv2.bias",
"model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.106.conv2.weight",
"model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.106.conv_shortcut.bias",
"model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.106.conv_shortcut.weight",
"model.diffusion_model.output_blocks.3.0.time_mixer.mix_factor": "blocks.109.mix_factor",
"model.diffusion_model.output_blocks.3.0.time_stack.emb_layers.1.bias": "blocks.108.time_emb_proj.bias",
"model.diffusion_model.output_blocks.3.0.time_stack.emb_layers.1.weight": "blocks.108.time_emb_proj.weight",
"model.diffusion_model.output_blocks.3.0.time_stack.in_layers.0.bias": "blocks.108.norm1.bias",
"model.diffusion_model.output_blocks.3.0.time_stack.in_layers.0.weight": "blocks.108.norm1.weight",
"model.diffusion_model.output_blocks.3.0.time_stack.in_layers.2.bias": "blocks.108.conv1.bias",
"model.diffusion_model.output_blocks.3.0.time_stack.in_layers.2.weight": "blocks.108.conv1.weight",
"model.diffusion_model.output_blocks.3.0.time_stack.out_layers.0.bias": "blocks.108.norm2.bias",
"model.diffusion_model.output_blocks.3.0.time_stack.out_layers.0.weight": "blocks.108.norm2.weight",
"model.diffusion_model.output_blocks.3.0.time_stack.out_layers.3.bias": "blocks.108.conv2.bias",
"model.diffusion_model.output_blocks.3.0.time_stack.out_layers.3.weight": "blocks.108.conv2.weight",
"model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.111.norm.bias",
"model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.111.norm.weight",
"model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.111.proj_in.bias",
"model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.111.proj_in.weight",
"model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.114.proj.bias",
"model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.114.proj.weight",
"model.diffusion_model.output_blocks.3.1.time_mixer.mix_factor": "blocks.114.mix_factor",
"model.diffusion_model.output_blocks.3.1.time_pos_embed.0.bias": "blocks.113.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.3.1.time_pos_embed.0.weight": "blocks.113.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.3.1.time_pos_embed.2.bias": "blocks.113.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.3.1.time_pos_embed.2.weight": "blocks.113.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_k.weight": "blocks.113.attn1.to_k.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_out.0.bias": "blocks.113.attn1.to_out.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_out.0.weight": "blocks.113.attn1.to_out.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_q.weight": "blocks.113.attn1.to_q.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_v.weight": "blocks.113.attn1.to_v.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_k.weight": "blocks.113.attn2.to_k.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_out.0.bias": "blocks.113.attn2.to_out.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_out.0.weight": "blocks.113.attn2.to_out.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_q.weight": "blocks.113.attn2.to_q.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_v.weight": "blocks.113.attn2.to_v.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.0.proj.bias": "blocks.113.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.0.proj.weight": "blocks.113.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.2.bias": "blocks.113.ff_out.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.2.weight": "blocks.113.ff_out.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.113.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.113.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.2.bias": "blocks.113.ff_in.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.2.weight": "blocks.113.ff_in.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm1.bias": "blocks.113.norm1.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm1.weight": "blocks.113.norm1.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm2.bias": "blocks.113.norm2.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm2.weight": "blocks.113.norm2.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm3.bias": "blocks.113.norm_out.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm3.weight": "blocks.113.norm_out.weight",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm_in.bias": "blocks.113.norm_in.bias",
"model.diffusion_model.output_blocks.3.1.time_stack.0.norm_in.weight": "blocks.113.norm_in.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.111.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.111.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.111.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.111.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.111.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.111.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.111.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.111.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.111.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.111.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.111.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.111.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.111.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.111.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.111.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.111.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.111.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.111.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.111.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.111.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.116.time_emb_proj.bias",
"model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.116.time_emb_proj.weight",
"model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.116.norm1.bias",
"model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.116.norm1.weight",
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.116.conv1.bias",
"model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.116.conv1.weight",
"model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.116.norm2.bias",
"model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.116.norm2.weight",
"model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.116.conv2.bias",
"model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.116.conv2.weight",
"model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.116.conv_shortcut.bias",
"model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.116.conv_shortcut.weight",
"model.diffusion_model.output_blocks.4.0.time_mixer.mix_factor": "blocks.119.mix_factor",
"model.diffusion_model.output_blocks.4.0.time_stack.emb_layers.1.bias": "blocks.118.time_emb_proj.bias",
"model.diffusion_model.output_blocks.4.0.time_stack.emb_layers.1.weight": "blocks.118.time_emb_proj.weight",
"model.diffusion_model.output_blocks.4.0.time_stack.in_layers.0.bias": "blocks.118.norm1.bias",
"model.diffusion_model.output_blocks.4.0.time_stack.in_layers.0.weight": "blocks.118.norm1.weight",
"model.diffusion_model.output_blocks.4.0.time_stack.in_layers.2.bias": "blocks.118.conv1.bias",
"model.diffusion_model.output_blocks.4.0.time_stack.in_layers.2.weight": "blocks.118.conv1.weight",
"model.diffusion_model.output_blocks.4.0.time_stack.out_layers.0.bias": "blocks.118.norm2.bias",
"model.diffusion_model.output_blocks.4.0.time_stack.out_layers.0.weight": "blocks.118.norm2.weight",
"model.diffusion_model.output_blocks.4.0.time_stack.out_layers.3.bias": "blocks.118.conv2.bias",
"model.diffusion_model.output_blocks.4.0.time_stack.out_layers.3.weight": "blocks.118.conv2.weight",
"model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.121.norm.bias",
"model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.121.norm.weight",
"model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.121.proj_in.bias",
"model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.121.proj_in.weight",
"model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.124.proj.bias",
"model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.124.proj.weight",
"model.diffusion_model.output_blocks.4.1.time_mixer.mix_factor": "blocks.124.mix_factor",
"model.diffusion_model.output_blocks.4.1.time_pos_embed.0.bias": "blocks.123.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.4.1.time_pos_embed.0.weight": "blocks.123.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.4.1.time_pos_embed.2.bias": "blocks.123.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.4.1.time_pos_embed.2.weight": "blocks.123.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_k.weight": "blocks.123.attn1.to_k.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_out.0.bias": "blocks.123.attn1.to_out.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_out.0.weight": "blocks.123.attn1.to_out.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_q.weight": "blocks.123.attn1.to_q.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_v.weight": "blocks.123.attn1.to_v.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_k.weight": "blocks.123.attn2.to_k.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_out.0.bias": "blocks.123.attn2.to_out.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_out.0.weight": "blocks.123.attn2.to_out.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_q.weight": "blocks.123.attn2.to_q.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_v.weight": "blocks.123.attn2.to_v.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.0.proj.bias": "blocks.123.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.0.proj.weight": "blocks.123.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.2.bias": "blocks.123.ff_out.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.2.weight": "blocks.123.ff_out.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.123.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.123.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.2.bias": "blocks.123.ff_in.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.2.weight": "blocks.123.ff_in.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm1.bias": "blocks.123.norm1.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm1.weight": "blocks.123.norm1.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm2.bias": "blocks.123.norm2.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm2.weight": "blocks.123.norm2.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm3.bias": "blocks.123.norm_out.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm3.weight": "blocks.123.norm_out.weight",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm_in.bias": "blocks.123.norm_in.bias",
"model.diffusion_model.output_blocks.4.1.time_stack.0.norm_in.weight": "blocks.123.norm_in.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.121.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.121.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.121.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.121.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.121.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.121.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.121.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.121.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.121.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.121.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.121.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.121.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.121.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.121.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.121.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.121.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.121.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.121.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.121.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.121.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.126.time_emb_proj.bias",
"model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.126.time_emb_proj.weight",
"model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.126.norm1.bias",
"model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.126.norm1.weight",
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.126.conv1.bias",
"model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.126.conv1.weight",
"model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.126.norm2.bias",
"model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.126.norm2.weight",
"model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.126.conv2.bias",
"model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.126.conv2.weight",
"model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.126.conv_shortcut.bias",
"model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.126.conv_shortcut.weight",
"model.diffusion_model.output_blocks.5.0.time_mixer.mix_factor": "blocks.129.mix_factor",
"model.diffusion_model.output_blocks.5.0.time_stack.emb_layers.1.bias": "blocks.128.time_emb_proj.bias",
"model.diffusion_model.output_blocks.5.0.time_stack.emb_layers.1.weight": "blocks.128.time_emb_proj.weight",
"model.diffusion_model.output_blocks.5.0.time_stack.in_layers.0.bias": "blocks.128.norm1.bias",
"model.diffusion_model.output_blocks.5.0.time_stack.in_layers.0.weight": "blocks.128.norm1.weight",
"model.diffusion_model.output_blocks.5.0.time_stack.in_layers.2.bias": "blocks.128.conv1.bias",
"model.diffusion_model.output_blocks.5.0.time_stack.in_layers.2.weight": "blocks.128.conv1.weight",
"model.diffusion_model.output_blocks.5.0.time_stack.out_layers.0.bias": "blocks.128.norm2.bias",
"model.diffusion_model.output_blocks.5.0.time_stack.out_layers.0.weight": "blocks.128.norm2.weight",
"model.diffusion_model.output_blocks.5.0.time_stack.out_layers.3.bias": "blocks.128.conv2.bias",
"model.diffusion_model.output_blocks.5.0.time_stack.out_layers.3.weight": "blocks.128.conv2.weight",
"model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.131.norm.bias",
"model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.131.norm.weight",
"model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.131.proj_in.bias",
"model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.131.proj_in.weight",
"model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.134.proj.bias",
"model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.134.proj.weight",
"model.diffusion_model.output_blocks.5.1.time_mixer.mix_factor": "blocks.134.mix_factor",
"model.diffusion_model.output_blocks.5.1.time_pos_embed.0.bias": "blocks.133.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.5.1.time_pos_embed.0.weight": "blocks.133.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.5.1.time_pos_embed.2.bias": "blocks.133.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.5.1.time_pos_embed.2.weight": "blocks.133.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_k.weight": "blocks.133.attn1.to_k.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_out.0.bias": "blocks.133.attn1.to_out.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_out.0.weight": "blocks.133.attn1.to_out.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_q.weight": "blocks.133.attn1.to_q.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_v.weight": "blocks.133.attn1.to_v.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_k.weight": "blocks.133.attn2.to_k.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_out.0.bias": "blocks.133.attn2.to_out.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_out.0.weight": "blocks.133.attn2.to_out.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_q.weight": "blocks.133.attn2.to_q.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_v.weight": "blocks.133.attn2.to_v.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.0.proj.bias": "blocks.133.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.0.proj.weight": "blocks.133.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.2.bias": "blocks.133.ff_out.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.2.weight": "blocks.133.ff_out.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.133.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.133.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.2.bias": "blocks.133.ff_in.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.2.weight": "blocks.133.ff_in.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm1.bias": "blocks.133.norm1.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm1.weight": "blocks.133.norm1.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm2.bias": "blocks.133.norm2.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm2.weight": "blocks.133.norm2.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm3.bias": "blocks.133.norm_out.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm3.weight": "blocks.133.norm_out.weight",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm_in.bias": "blocks.133.norm_in.bias",
"model.diffusion_model.output_blocks.5.1.time_stack.0.norm_in.weight": "blocks.133.norm_in.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.131.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.131.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.131.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.131.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.131.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.131.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.131.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.131.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.131.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.131.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.131.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.131.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.131.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.131.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.131.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.131.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.131.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.131.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.131.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.131.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.135.conv.bias",
"model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.135.conv.weight",
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.137.time_emb_proj.bias",
"model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.137.time_emb_proj.weight",
"model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.137.norm1.bias",
"model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.137.norm1.weight",
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.137.conv1.bias",
"model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.137.conv1.weight",
"model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.137.norm2.bias",
"model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.137.norm2.weight",
"model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.137.conv2.bias",
"model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.137.conv2.weight",
"model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.137.conv_shortcut.bias",
"model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.137.conv_shortcut.weight",
"model.diffusion_model.output_blocks.6.0.time_mixer.mix_factor": "blocks.140.mix_factor",
"model.diffusion_model.output_blocks.6.0.time_stack.emb_layers.1.bias": "blocks.139.time_emb_proj.bias",
"model.diffusion_model.output_blocks.6.0.time_stack.emb_layers.1.weight": "blocks.139.time_emb_proj.weight",
"model.diffusion_model.output_blocks.6.0.time_stack.in_layers.0.bias": "blocks.139.norm1.bias",
"model.diffusion_model.output_blocks.6.0.time_stack.in_layers.0.weight": "blocks.139.norm1.weight",
"model.diffusion_model.output_blocks.6.0.time_stack.in_layers.2.bias": "blocks.139.conv1.bias",
"model.diffusion_model.output_blocks.6.0.time_stack.in_layers.2.weight": "blocks.139.conv1.weight",
"model.diffusion_model.output_blocks.6.0.time_stack.out_layers.0.bias": "blocks.139.norm2.bias",
"model.diffusion_model.output_blocks.6.0.time_stack.out_layers.0.weight": "blocks.139.norm2.weight",
"model.diffusion_model.output_blocks.6.0.time_stack.out_layers.3.bias": "blocks.139.conv2.bias",
"model.diffusion_model.output_blocks.6.0.time_stack.out_layers.3.weight": "blocks.139.conv2.weight",
"model.diffusion_model.output_blocks.6.1.norm.bias": "blocks.142.norm.bias",
"model.diffusion_model.output_blocks.6.1.norm.weight": "blocks.142.norm.weight",
"model.diffusion_model.output_blocks.6.1.proj_in.bias": "blocks.142.proj_in.bias",
"model.diffusion_model.output_blocks.6.1.proj_in.weight": "blocks.142.proj_in.weight",
"model.diffusion_model.output_blocks.6.1.proj_out.bias": "blocks.145.proj.bias",
"model.diffusion_model.output_blocks.6.1.proj_out.weight": "blocks.145.proj.weight",
"model.diffusion_model.output_blocks.6.1.time_mixer.mix_factor": "blocks.145.mix_factor",
"model.diffusion_model.output_blocks.6.1.time_pos_embed.0.bias": "blocks.144.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.6.1.time_pos_embed.0.weight": "blocks.144.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.6.1.time_pos_embed.2.bias": "blocks.144.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.6.1.time_pos_embed.2.weight": "blocks.144.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_k.weight": "blocks.144.attn1.to_k.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_out.0.bias": "blocks.144.attn1.to_out.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_out.0.weight": "blocks.144.attn1.to_out.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_q.weight": "blocks.144.attn1.to_q.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_v.weight": "blocks.144.attn1.to_v.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_k.weight": "blocks.144.attn2.to_k.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_out.0.bias": "blocks.144.attn2.to_out.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_out.0.weight": "blocks.144.attn2.to_out.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_q.weight": "blocks.144.attn2.to_q.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_v.weight": "blocks.144.attn2.to_v.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.0.proj.bias": "blocks.144.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.0.proj.weight": "blocks.144.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.2.bias": "blocks.144.ff_out.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.2.weight": "blocks.144.ff_out.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.144.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.144.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.2.bias": "blocks.144.ff_in.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.2.weight": "blocks.144.ff_in.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm1.bias": "blocks.144.norm1.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm1.weight": "blocks.144.norm1.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm2.bias": "blocks.144.norm2.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm2.weight": "blocks.144.norm2.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm3.bias": "blocks.144.norm_out.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm3.weight": "blocks.144.norm_out.weight",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm_in.bias": "blocks.144.norm_in.bias",
"model.diffusion_model.output_blocks.6.1.time_stack.0.norm_in.weight": "blocks.144.norm_in.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight": "blocks.142.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.142.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.142.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight": "blocks.142.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight": "blocks.142.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight": "blocks.142.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.142.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.142.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight": "blocks.142.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight": "blocks.142.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.142.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.142.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias": "blocks.142.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight": "blocks.142.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias": "blocks.142.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight": "blocks.142.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias": "blocks.142.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "blocks.142.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "blocks.142.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "blocks.142.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.147.time_emb_proj.bias",
"model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.147.time_emb_proj.weight",
"model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.147.norm1.bias",
"model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.147.norm1.weight",
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.147.conv1.bias",
"model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.147.conv1.weight",
"model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.147.norm2.bias",
"model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.147.norm2.weight",
"model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.147.conv2.bias",
"model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.147.conv2.weight",
"model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.147.conv_shortcut.bias",
"model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.147.conv_shortcut.weight",
"model.diffusion_model.output_blocks.7.0.time_mixer.mix_factor": "blocks.150.mix_factor",
"model.diffusion_model.output_blocks.7.0.time_stack.emb_layers.1.bias": "blocks.149.time_emb_proj.bias",
"model.diffusion_model.output_blocks.7.0.time_stack.emb_layers.1.weight": "blocks.149.time_emb_proj.weight",
"model.diffusion_model.output_blocks.7.0.time_stack.in_layers.0.bias": "blocks.149.norm1.bias",
"model.diffusion_model.output_blocks.7.0.time_stack.in_layers.0.weight": "blocks.149.norm1.weight",
"model.diffusion_model.output_blocks.7.0.time_stack.in_layers.2.bias": "blocks.149.conv1.bias",
"model.diffusion_model.output_blocks.7.0.time_stack.in_layers.2.weight": "blocks.149.conv1.weight",
"model.diffusion_model.output_blocks.7.0.time_stack.out_layers.0.bias": "blocks.149.norm2.bias",
"model.diffusion_model.output_blocks.7.0.time_stack.out_layers.0.weight": "blocks.149.norm2.weight",
"model.diffusion_model.output_blocks.7.0.time_stack.out_layers.3.bias": "blocks.149.conv2.bias",
"model.diffusion_model.output_blocks.7.0.time_stack.out_layers.3.weight": "blocks.149.conv2.weight",
"model.diffusion_model.output_blocks.7.1.norm.bias": "blocks.152.norm.bias",
"model.diffusion_model.output_blocks.7.1.norm.weight": "blocks.152.norm.weight",
"model.diffusion_model.output_blocks.7.1.proj_in.bias": "blocks.152.proj_in.bias",
"model.diffusion_model.output_blocks.7.1.proj_in.weight": "blocks.152.proj_in.weight",
"model.diffusion_model.output_blocks.7.1.proj_out.bias": "blocks.155.proj.bias",
"model.diffusion_model.output_blocks.7.1.proj_out.weight": "blocks.155.proj.weight",
"model.diffusion_model.output_blocks.7.1.time_mixer.mix_factor": "blocks.155.mix_factor",
"model.diffusion_model.output_blocks.7.1.time_pos_embed.0.bias": "blocks.154.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.7.1.time_pos_embed.0.weight": "blocks.154.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.7.1.time_pos_embed.2.bias": "blocks.154.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.7.1.time_pos_embed.2.weight": "blocks.154.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_k.weight": "blocks.154.attn1.to_k.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_out.0.bias": "blocks.154.attn1.to_out.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_out.0.weight": "blocks.154.attn1.to_out.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_q.weight": "blocks.154.attn1.to_q.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_v.weight": "blocks.154.attn1.to_v.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_k.weight": "blocks.154.attn2.to_k.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_out.0.bias": "blocks.154.attn2.to_out.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_out.0.weight": "blocks.154.attn2.to_out.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_q.weight": "blocks.154.attn2.to_q.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_v.weight": "blocks.154.attn2.to_v.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.0.proj.bias": "blocks.154.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.0.proj.weight": "blocks.154.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.2.bias": "blocks.154.ff_out.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.2.weight": "blocks.154.ff_out.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.154.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.154.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.2.bias": "blocks.154.ff_in.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.2.weight": "blocks.154.ff_in.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm1.bias": "blocks.154.norm1.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm1.weight": "blocks.154.norm1.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm2.bias": "blocks.154.norm2.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm2.weight": "blocks.154.norm2.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm3.bias": "blocks.154.norm_out.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm3.weight": "blocks.154.norm_out.weight",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm_in.bias": "blocks.154.norm_in.bias",
"model.diffusion_model.output_blocks.7.1.time_stack.0.norm_in.weight": "blocks.154.norm_in.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.152.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.152.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.152.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.152.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.152.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.152.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.152.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.152.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.152.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.152.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.152.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.152.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.152.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.152.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.152.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.152.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.152.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.152.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.152.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.152.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.157.time_emb_proj.bias",
"model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.157.time_emb_proj.weight",
"model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.157.norm1.bias",
"model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.157.norm1.weight",
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.157.conv1.bias",
"model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.157.conv1.weight",
"model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.157.norm2.bias",
"model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.157.norm2.weight",
"model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.157.conv2.bias",
"model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.157.conv2.weight",
"model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.157.conv_shortcut.bias",
"model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.157.conv_shortcut.weight",
"model.diffusion_model.output_blocks.8.0.time_mixer.mix_factor": "blocks.160.mix_factor",
"model.diffusion_model.output_blocks.8.0.time_stack.emb_layers.1.bias": "blocks.159.time_emb_proj.bias",
"model.diffusion_model.output_blocks.8.0.time_stack.emb_layers.1.weight": "blocks.159.time_emb_proj.weight",
"model.diffusion_model.output_blocks.8.0.time_stack.in_layers.0.bias": "blocks.159.norm1.bias",
"model.diffusion_model.output_blocks.8.0.time_stack.in_layers.0.weight": "blocks.159.norm1.weight",
"model.diffusion_model.output_blocks.8.0.time_stack.in_layers.2.bias": "blocks.159.conv1.bias",
"model.diffusion_model.output_blocks.8.0.time_stack.in_layers.2.weight": "blocks.159.conv1.weight",
"model.diffusion_model.output_blocks.8.0.time_stack.out_layers.0.bias": "blocks.159.norm2.bias",
"model.diffusion_model.output_blocks.8.0.time_stack.out_layers.0.weight": "blocks.159.norm2.weight",
"model.diffusion_model.output_blocks.8.0.time_stack.out_layers.3.bias": "blocks.159.conv2.bias",
"model.diffusion_model.output_blocks.8.0.time_stack.out_layers.3.weight": "blocks.159.conv2.weight",
"model.diffusion_model.output_blocks.8.1.norm.bias": "blocks.162.norm.bias",
"model.diffusion_model.output_blocks.8.1.norm.weight": "blocks.162.norm.weight",
"model.diffusion_model.output_blocks.8.1.proj_in.bias": "blocks.162.proj_in.bias",
"model.diffusion_model.output_blocks.8.1.proj_in.weight": "blocks.162.proj_in.weight",
"model.diffusion_model.output_blocks.8.1.proj_out.bias": "blocks.165.proj.bias",
"model.diffusion_model.output_blocks.8.1.proj_out.weight": "blocks.165.proj.weight",
"model.diffusion_model.output_blocks.8.1.time_mixer.mix_factor": "blocks.165.mix_factor",
"model.diffusion_model.output_blocks.8.1.time_pos_embed.0.bias": "blocks.164.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.8.1.time_pos_embed.0.weight": "blocks.164.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.8.1.time_pos_embed.2.bias": "blocks.164.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.8.1.time_pos_embed.2.weight": "blocks.164.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_k.weight": "blocks.164.attn1.to_k.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_out.0.bias": "blocks.164.attn1.to_out.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_out.0.weight": "blocks.164.attn1.to_out.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_q.weight": "blocks.164.attn1.to_q.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_v.weight": "blocks.164.attn1.to_v.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_k.weight": "blocks.164.attn2.to_k.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_out.0.bias": "blocks.164.attn2.to_out.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_out.0.weight": "blocks.164.attn2.to_out.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_q.weight": "blocks.164.attn2.to_q.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_v.weight": "blocks.164.attn2.to_v.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.0.proj.bias": "blocks.164.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.0.proj.weight": "blocks.164.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.2.bias": "blocks.164.ff_out.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.2.weight": "blocks.164.ff_out.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.164.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.164.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.2.bias": "blocks.164.ff_in.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.2.weight": "blocks.164.ff_in.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm1.bias": "blocks.164.norm1.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm1.weight": "blocks.164.norm1.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm2.bias": "blocks.164.norm2.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm2.weight": "blocks.164.norm2.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm3.bias": "blocks.164.norm_out.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm3.weight": "blocks.164.norm_out.weight",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm_in.bias": "blocks.164.norm_in.bias",
"model.diffusion_model.output_blocks.8.1.time_stack.0.norm_in.weight": "blocks.164.norm_in.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.162.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.162.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.162.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.162.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.162.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.162.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.162.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.162.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.162.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.162.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.162.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.162.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.162.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.162.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.162.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.162.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.162.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.162.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.162.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.162.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.8.2.conv.bias": "blocks.166.conv.bias",
"model.diffusion_model.output_blocks.8.2.conv.weight": "blocks.166.conv.weight",
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "blocks.168.time_emb_proj.bias",
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "blocks.168.time_emb_proj.weight",
"model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "blocks.168.norm1.bias",
"model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "blocks.168.norm1.weight",
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "blocks.168.conv1.bias",
"model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "blocks.168.conv1.weight",
"model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "blocks.168.norm2.bias",
"model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "blocks.168.norm2.weight",
"model.diffusion_model.output_blocks.9.0.out_layers.3.bias": "blocks.168.conv2.bias",
"model.diffusion_model.output_blocks.9.0.out_layers.3.weight": "blocks.168.conv2.weight",
"model.diffusion_model.output_blocks.9.0.skip_connection.bias": "blocks.168.conv_shortcut.bias",
"model.diffusion_model.output_blocks.9.0.skip_connection.weight": "blocks.168.conv_shortcut.weight",
"model.diffusion_model.output_blocks.9.0.time_mixer.mix_factor": "blocks.171.mix_factor",
"model.diffusion_model.output_blocks.9.0.time_stack.emb_layers.1.bias": "blocks.170.time_emb_proj.bias",
"model.diffusion_model.output_blocks.9.0.time_stack.emb_layers.1.weight": "blocks.170.time_emb_proj.weight",
"model.diffusion_model.output_blocks.9.0.time_stack.in_layers.0.bias": "blocks.170.norm1.bias",
"model.diffusion_model.output_blocks.9.0.time_stack.in_layers.0.weight": "blocks.170.norm1.weight",
"model.diffusion_model.output_blocks.9.0.time_stack.in_layers.2.bias": "blocks.170.conv1.bias",
"model.diffusion_model.output_blocks.9.0.time_stack.in_layers.2.weight": "blocks.170.conv1.weight",
"model.diffusion_model.output_blocks.9.0.time_stack.out_layers.0.bias": "blocks.170.norm2.bias",
"model.diffusion_model.output_blocks.9.0.time_stack.out_layers.0.weight": "blocks.170.norm2.weight",
"model.diffusion_model.output_blocks.9.0.time_stack.out_layers.3.bias": "blocks.170.conv2.bias",
"model.diffusion_model.output_blocks.9.0.time_stack.out_layers.3.weight": "blocks.170.conv2.weight",
"model.diffusion_model.output_blocks.9.1.norm.bias": "blocks.173.norm.bias",
"model.diffusion_model.output_blocks.9.1.norm.weight": "blocks.173.norm.weight",
"model.diffusion_model.output_blocks.9.1.proj_in.bias": "blocks.173.proj_in.bias",
"model.diffusion_model.output_blocks.9.1.proj_in.weight": "blocks.173.proj_in.weight",
"model.diffusion_model.output_blocks.9.1.proj_out.bias": "blocks.176.proj.bias",
"model.diffusion_model.output_blocks.9.1.proj_out.weight": "blocks.176.proj.weight",
"model.diffusion_model.output_blocks.9.1.time_mixer.mix_factor": "blocks.176.mix_factor",
"model.diffusion_model.output_blocks.9.1.time_pos_embed.0.bias": "blocks.175.positional_embedding_proj.0.bias",
"model.diffusion_model.output_blocks.9.1.time_pos_embed.0.weight": "blocks.175.positional_embedding_proj.0.weight",
"model.diffusion_model.output_blocks.9.1.time_pos_embed.2.bias": "blocks.175.positional_embedding_proj.2.bias",
"model.diffusion_model.output_blocks.9.1.time_pos_embed.2.weight": "blocks.175.positional_embedding_proj.2.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_k.weight": "blocks.175.attn1.to_k.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_out.0.bias": "blocks.175.attn1.to_out.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_out.0.weight": "blocks.175.attn1.to_out.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_q.weight": "blocks.175.attn1.to_q.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_v.weight": "blocks.175.attn1.to_v.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_k.weight": "blocks.175.attn2.to_k.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_out.0.bias": "blocks.175.attn2.to_out.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_out.0.weight": "blocks.175.attn2.to_out.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_q.weight": "blocks.175.attn2.to_q.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_v.weight": "blocks.175.attn2.to_v.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.0.proj.bias": "blocks.175.act_fn_out.proj.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.0.proj.weight": "blocks.175.act_fn_out.proj.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.2.bias": "blocks.175.ff_out.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.2.weight": "blocks.175.ff_out.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.175.act_fn_in.proj.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.175.act_fn_in.proj.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.2.bias": "blocks.175.ff_in.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.2.weight": "blocks.175.ff_in.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm1.bias": "blocks.175.norm1.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm1.weight": "blocks.175.norm1.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm2.bias": "blocks.175.norm2.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm2.weight": "blocks.175.norm2.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm3.bias": "blocks.175.norm_out.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm3.weight": "blocks.175.norm_out.weight",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.bias": "blocks.175.norm_in.bias",
"model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.weight": "blocks.175.norm_in.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight": "blocks.173.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.173.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.173.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight": "blocks.173.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight": "blocks.173.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight": "blocks.173.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.173.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.173.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight": "blocks.173.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight": "blocks.173.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.173.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.173.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias": "blocks.173.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight": "blocks.173.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias": "blocks.173.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight": "blocks.173.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias": "blocks.173.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight": "blocks.173.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias": "blocks.173.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight": "blocks.173.transformer_blocks.0.norm3.weight",
"model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias",
"model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight",
"model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias",
"model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight",
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if ".proj_in." in name or ".proj_out." in name:
param = param.squeeze()
state_dict_[rename_dict[name]] = param
if add_positional_conv is not None:
extra_names = [
"blocks.7.positional_conv", "blocks.17.positional_conv", "blocks.29.positional_conv", "blocks.39.positional_conv",
"blocks.51.positional_conv", "blocks.61.positional_conv", "blocks.83.positional_conv", "blocks.113.positional_conv",
"blocks.123.positional_conv", "blocks.133.positional_conv", "blocks.144.positional_conv", "blocks.154.positional_conv",
"blocks.164.positional_conv", "blocks.175.positional_conv", "blocks.185.positional_conv", "blocks.195.positional_conv",
]
extra_channels = [320, 320, 640, 640, 1280, 1280, 1280, 1280, 1280, 1280, 640, 640, 640, 320, 320, 320]
for name, channels in zip(extra_names, extra_channels):
weight = torch.zeros((channels, channels, 3, 3, 3))
weight[:,:,1,1,1] = torch.eye(channels, channels)
bias = torch.zeros((channels,))
state_dict_[name + ".weight"] = weight
state_dict_[name + ".bias"] = bias
return state_dict_
|