File size: 1,935 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import numpy as np
from PIL import Image



class BasePipeline(torch.nn.Module):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__()
        self.device = device
        self.torch_dtype = torch_dtype


    def preprocess_image(self, image):
        image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
        return image
    

    def preprocess_images(self, images):
        return [self.preprocess_image(image) for image in images]
    

    def vae_output_to_image(self, vae_output):
        image = vae_output[0].cpu().float().permute(1, 2, 0).numpy()
        image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
        return image
    

    def vae_output_to_video(self, vae_output):
        video = vae_output.cpu().permute(1, 2, 0).numpy()
        video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video]
        return video

    
    def merge_latents(self, value, latents, masks, scales):
        height, width = value.shape[-2:]
        weight = torch.ones_like(value)
        for latent, mask, scale in zip(latents, masks, scales):
            mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0
            mask = mask.repeat(1, latent.shape[1], 1, 1)
            value[mask] += latent[mask] * scale
            weight[mask] += scale
        value /= weight
        return value


    def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback):
        noise_pred_global = inference_callback(prompt_emb_global)
        noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals]
        noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales)
        return noise_pred