File size: 11,864 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder, SDMotionModel
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from .sd_image import SDImagePipeline
from .dancer import lets_dance
from typing import List
import torch
from tqdm import tqdm



def lets_dance_with_long_video(
    unet: SDUNet,
    motion_modules: SDMotionModel = None,
    controlnet: MultiControlNetManager = None,
    sample = None,
    timestep = None,
    encoder_hidden_states = None,
    ipadapter_kwargs_list = {},
    controlnet_frames = None,
    unet_batch_size = 1,
    controlnet_batch_size = 1,
    cross_frame_attention = False,
    tiled=False,
    tile_size=64,
    tile_stride=32,
    device="cuda",
    animatediff_batch_size=16,
    animatediff_stride=8,
):
    num_frames = sample.shape[0]
    hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)]

    for batch_id in range(0, num_frames, animatediff_stride):
        batch_id_ = min(batch_id + animatediff_batch_size, num_frames)

        # process this batch
        hidden_states_batch = lets_dance(
            unet, motion_modules, controlnet,
            sample[batch_id: batch_id_].to(device),
            timestep,
            encoder_hidden_states,
            ipadapter_kwargs_list=ipadapter_kwargs_list,
            controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None,
            unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
            cross_frame_attention=cross_frame_attention,
            tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, device=device
        ).cpu()

        # update hidden_states
        for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch):
            bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2)
            hidden_states, num = hidden_states_output[i]
            hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias))
            hidden_states_output[i] = (hidden_states, num + bias)

        if batch_id_ == num_frames:
            break

    # output
    hidden_states = torch.stack([h for h, _ in hidden_states_output])
    return hidden_states



class SDVideoPipeline(SDImagePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear")
        self.prompter = SDPrompter()
        # models
        self.text_encoder: SDTextEncoder = None
        self.unet: SDUNet = None
        self.vae_decoder: SDVAEDecoder = None
        self.vae_encoder: SDVAEEncoder = None
        self.controlnet: MultiControlNetManager = None
        self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None
        self.ipadapter: SDIpAdapter = None
        self.motion_modules: SDMotionModel = None


    def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        # Main models
        self.text_encoder = model_manager.fetch_model("sd_text_encoder")
        self.unet = model_manager.fetch_model("sd_unet")
        self.vae_decoder = model_manager.fetch_model("sd_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("sd_vae_encoder")
        self.prompter.fetch_models(self.text_encoder)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)

        # ControlNets
        controlnet_units = []
        for config in controlnet_config_units:
            controlnet_unit = ControlNetUnit(
                Annotator(config.processor_id, device=self.device),
                model_manager.fetch_model("sd_controlnet", config.model_path),
                config.scale
            )
            controlnet_units.append(controlnet_unit)
        self.controlnet = MultiControlNetManager(controlnet_units)

        # IP-Adapters
        self.ipadapter = model_manager.fetch_model("sd_ipadapter")
        self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder")

        # Motion Modules
        self.motion_modules = model_manager.fetch_model("sd_motion_modules")
        if self.motion_modules is None:
            self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear")


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
        pipe = SDVideoPipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes)
        return pipe
    

    def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32):
        images = [
            self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            for frame_id in range(latents.shape[0])
        ]
        return images
    

    def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
        latents = []
        for image in processed_images:
            image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
            latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            latents.append(latent.cpu())
        latents = torch.concat(latents, dim=0)
        return latents
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        num_frames=None,
        input_frames=None,
        ipadapter_images=None,
        ipadapter_scale=1.0,
        controlnet_frames=None,
        denoising_strength=1.0,
        height=512,
        width=512,
        num_inference_steps=20,
        animatediff_batch_size = 16,
        animatediff_stride = 8,
        unet_batch_size = 1,
        controlnet_batch_size = 1,
        cross_frame_attention = False,
        smoother=None,
        smoother_progress_ids=[],
        tiled=False,
        tile_size=64,
        tile_stride=32,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Tiler parameters, batch size ...
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
        other_kwargs = {
            "animatediff_batch_size": animatediff_batch_size, "animatediff_stride": animatediff_stride,
            "unet_batch_size": unet_batch_size, "controlnet_batch_size": controlnet_batch_size,
            "cross_frame_attention": cross_frame_attention,
        }

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if self.motion_modules is None:
            noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
        else:
            noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
        if input_frames is None or denoising_strength == 1.0:
            latents = noise
        else:
            latents = self.encode_video(input_frames, **tiler_kwargs)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
        prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)

        # IP-Adapter
        if ipadapter_images is not None:
            ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
            ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
            ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
        else:
            ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}

        # Prepare ControlNets
        if controlnet_frames is not None:
            if isinstance(controlnet_frames[0], list):
                controlnet_frames_ = []
                for processor_id in range(len(controlnet_frames)):
                    controlnet_frames_.append(
                        torch.stack([
                            self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
                            for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
                        ], dim=1)
                    )
                controlnet_frames = torch.concat(controlnet_frames_, dim=0)
            else:
                controlnet_frames = torch.stack([
                    self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
                    for controlnet_frame in progress_bar_cmd(controlnet_frames)
                ], dim=1)
            controlnet_kwargs = {"controlnet_frames": controlnet_frames}
        else:
            controlnet_kwargs = {"controlnet_frames": None}
        
        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(self.device)

            # Classifier-free guidance
            noise_pred_posi = lets_dance_with_long_video(
                self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
                sample=latents, timestep=timestep,
                **prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **other_kwargs, **tiler_kwargs,
                device=self.device,
            )
            noise_pred_nega = lets_dance_with_long_video(
                self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
                sample=latents, timestep=timestep,
                **prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **other_kwargs, **tiler_kwargs,
                device=self.device,
            )
            noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)

            # DDIM and smoother
            if smoother is not None and progress_id in smoother_progress_ids:
                rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
                rendered_frames = self.decode_video(rendered_frames)
                rendered_frames = smoother(rendered_frames, original_frames=input_frames)
                target_latents = self.encode_video(rendered_frames)
                noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
            latents = self.scheduler.step(noise_pred, timestep, latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        output_frames = self.decode_video(latents, **tiler_kwargs)

        # Post-process
        if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
            output_frames = smoother(output_frames, original_frames=input_frames)

        return output_frames