Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,274 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import lightning as pl
from peft import LoraConfig, inject_adapter_in_model
import torch, os
from ..data.simple_text_image import TextImageDataset
from modelscope.hub.api import HubApi
class LightningModelForT2ILoRA(pl.LightningModule):
def __init__(
self,
learning_rate=1e-4,
use_gradient_checkpointing=True,
):
super().__init__()
# Set parameters
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
def load_models(self):
# This function is implemented in other modules
self.pipe = None
def freeze_parameters(self):
# Freeze parameters
self.pipe.requires_grad_(False)
self.pipe.eval()
self.pipe.denoising_model().train()
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out"):
# Add LoRA to UNet
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
for param in model.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
def training_step(self, batch, batch_idx):
# Data
text, image = batch["text"], batch["image"]
# Prepare input parameters
self.pipe.device = self.device
prompt_emb = self.pipe.encode_prompt(text, positive=True)
latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device))
noise = torch.randn_like(latents)
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,))
timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device)
extra_input = self.pipe.prepare_extra_input(latents)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
training_target = self.pipe.scheduler.training_target(latents, noise, timestep)
# Compute loss
noise_pred = self.pipe.denoising_model()(
noisy_latents, timestep=timestep, **prompt_emb, **extra_input,
use_gradient_checkpointing=self.use_gradient_checkpointing
)
loss = torch.nn.functional.mse_loss(noise_pred, training_target)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.denoising_model().state_dict()
for name, param in state_dict.items():
if name in trainable_param_names:
checkpoint[name] = param
def add_general_parsers(parser):
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=1024,
help="Image width.",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
default=False,
action="store_true",
help="Whether to randomly flip images horizontally",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--precision",
type=str,
default="16-mixed",
choices=["32", "16", "16-mixed"],
help="Training precision",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--modelscope_model_id",
type=str,
default=None,
help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.",
)
parser.add_argument(
"--modelscope_access_token",
type=str,
default=None,
help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.",
)
return parser
def launch_training_task(model, args):
# dataset and data loader
dataset = TextImageDataset(
args.dataset_path,
steps_per_epoch=args.steps_per_epoch * args.batch_size,
height=args.height,
width=args.width,
center_crop=args.center_crop,
random_flip=args.random_flip
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
precision=args.precision,
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(model=model, train_dataloaders=train_loader)
# Upload models
if args.modelscope_model_id is not None and args.modelscope_access_token is not None:
print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}")
with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f:
f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n')
api = HubApi()
api.login(args.modelscope_access_token)
api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir)
|