File size: 20,172 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
from .attention import Attention
from einops import repeat, rearrange
import math
import torch


class HunyuanDiTRotaryEmbedding(torch.nn.Module):

    def __init__(self, q_norm_shape=88, k_norm_shape=88, rotary_emb_on_k=True):
        super().__init__()
        self.q_norm = torch.nn.LayerNorm((q_norm_shape,), elementwise_affine=True, eps=1e-06)
        self.k_norm = torch.nn.LayerNorm((k_norm_shape,), elementwise_affine=True, eps=1e-06)
        self.rotary_emb_on_k = rotary_emb_on_k
        self.k_cache, self.v_cache = [], []

    def reshape_for_broadcast(self, freqs_cis, x):
        ndim = x.ndim
        shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)

    def rotate_half(self, x):
        x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
        return torch.stack([-x_imag, x_real], dim=-1).flatten(3)

    def apply_rotary_emb(self, xq, xk, freqs_cis):
        xk_out = None
        cos, sin = self.reshape_for_broadcast(freqs_cis, xq)
        cos, sin = cos.to(xq.device), sin.to(xq.device)
        xq_out = (xq.float() * cos + self.rotate_half(xq.float()) * sin).type_as(xq)
        if xk is not None:
            xk_out = (xk.float() * cos + self.rotate_half(xk.float()) * sin).type_as(xk)
        return xq_out, xk_out

    def forward(self, q, k, v, freqs_cis_img, to_cache=False):
        # norm
        q = self.q_norm(q)
        k = self.k_norm(k)

        # RoPE
        if self.rotary_emb_on_k:
            q, k = self.apply_rotary_emb(q, k, freqs_cis_img)
        else:
            q, _ = self.apply_rotary_emb(q, None, freqs_cis_img)
        
        if to_cache:
            self.k_cache.append(k)
            self.v_cache.append(v)
        elif len(self.k_cache) > 0 and len(self.v_cache) > 0:
            k = torch.concat([k] + self.k_cache, dim=2)
            v = torch.concat([v] + self.v_cache, dim=2)
            self.k_cache, self.v_cache = [], []
        return q, k, v


class FP32_Layernorm(torch.nn.LayerNorm):
    def forward(self, inputs):
        origin_dtype = inputs.dtype
        return torch.nn.functional.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).to(origin_dtype)


class FP32_SiLU(torch.nn.SiLU):
    def forward(self, inputs):
        origin_dtype = inputs.dtype
        return torch.nn.functional.silu(inputs.float(), inplace=False).to(origin_dtype)
    

class HunyuanDiTFinalLayer(torch.nn.Module):
    def __init__(self, final_hidden_size=1408, condition_dim=1408, patch_size=2, out_channels=8):
        super().__init__()
        self.norm_final = torch.nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = torch.nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = torch.nn.Sequential(
            FP32_SiLU(),
            torch.nn.Linear(condition_dim, 2 * final_hidden_size, bias=True)
        )

    def modulate(self, x, shift, scale):
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)

    def forward(self, hidden_states, condition_emb):
        shift, scale = self.adaLN_modulation(condition_emb).chunk(2, dim=1)
        hidden_states = self.modulate(self.norm_final(hidden_states), shift, scale)
        hidden_states = self.linear(hidden_states)
        return hidden_states


class HunyuanDiTBlock(torch.nn.Module):

    def __init__(
        self,
        hidden_dim=1408,
        condition_dim=1408,
        num_heads=16,
        mlp_ratio=4.3637,
        text_dim=1024,
        skip_connection=False
    ):
        super().__init__()
        self.norm1 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
        self.rota1 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads)
        self.attn1 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, bias_q=True, bias_kv=True, bias_out=True)
        self.norm2 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
        self.rota2 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads, rotary_emb_on_k=False)
        self.attn2 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, kv_dim=text_dim, bias_q=True, bias_kv=True, bias_out=True)
        self.norm3 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
        self.modulation = torch.nn.Sequential(FP32_SiLU(), torch.nn.Linear(condition_dim, hidden_dim, bias=True))
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(hidden_dim, int(hidden_dim*mlp_ratio), bias=True),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(int(hidden_dim*mlp_ratio), hidden_dim, bias=True)
        )
        if skip_connection:
            self.skip_norm = FP32_Layernorm((hidden_dim * 2,), eps=1e-6, elementwise_affine=True)
            self.skip_linear = torch.nn.Linear(hidden_dim * 2, hidden_dim, bias=True)
        else:
            self.skip_norm, self.skip_linear = None, None

    def forward(self, hidden_states, condition_emb, text_emb, freq_cis_img, residual=None, to_cache=False):
        # Long Skip Connection
        if self.skip_norm is not None and self.skip_linear is not None:
            hidden_states = torch.cat([hidden_states, residual], dim=-1)
            hidden_states = self.skip_norm(hidden_states)
            hidden_states = self.skip_linear(hidden_states)

        # Self-Attention
        shift_msa = self.modulation(condition_emb).unsqueeze(dim=1)
        attn_input = self.norm1(hidden_states) + shift_msa
        hidden_states = hidden_states + self.attn1(attn_input, qkv_preprocessor=lambda q, k, v: self.rota1(q, k, v, freq_cis_img, to_cache=to_cache))

        # Cross-Attention
        attn_input = self.norm3(hidden_states)
        hidden_states = hidden_states + self.attn2(attn_input, text_emb, qkv_preprocessor=lambda q, k, v: self.rota2(q, k, v, freq_cis_img))

        # FFN Layer
        mlp_input = self.norm2(hidden_states)
        hidden_states = hidden_states + self.mlp(mlp_input)
        return hidden_states
    

class AttentionPool(torch.nn.Module):
    def __init__(self, spacial_dim, embed_dim, num_heads, output_dim = None):
        super().__init__()
        self.positional_embedding = torch.nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5)
        self.k_proj = torch.nn.Linear(embed_dim, embed_dim)
        self.q_proj = torch.nn.Linear(embed_dim, embed_dim)
        self.v_proj = torch.nn.Linear(embed_dim, embed_dim)
        self.c_proj = torch.nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.permute(1, 0, 2)  # NLC -> LNC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (L+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (L+1)NC
        x, _ = torch.nn.functional.multi_head_attention_forward(
            query=x[:1], key=x, value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False
        )
        return x.squeeze(0)
    

class PatchEmbed(torch.nn.Module):
    def __init__(
        self,
        patch_size=(2, 2),
        in_chans=4,
        embed_dim=1408,
        bias=True,
    ):
        super().__init__()
        self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)

    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        return x
    

def timestep_embedding(t, dim, max_period=10000, repeat_only=False):
    # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
    if not repeat_only:
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period)
            * torch.arange(start=0, end=half, dtype=torch.float32)
            / half
        ).to(device=t.device)   # size: [dim/2], 一个指数衰减的曲线
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
            )
    else:
        embedding = repeat(t, "b -> b d", d=dim)
    return embedding
    

class TimestepEmbedder(torch.nn.Module):
    def __init__(self, hidden_size=1408, frequency_embedding_size=256):
        super().__init__()
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            torch.nn.SiLU(),
            torch.nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    def forward(self, t):
        t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class HunyuanDiT(torch.nn.Module):
    def __init__(self, num_layers_down=21, num_layers_up=19, in_channels=4, out_channels=8, hidden_dim=1408, text_dim=1024, t5_dim=2048, text_length=77, t5_length=256):
        super().__init__()

        # Embedders
        self.text_emb_padding = torch.nn.Parameter(torch.randn(text_length + t5_length, text_dim, dtype=torch.float32))
        self.t5_embedder = torch.nn.Sequential(
            torch.nn.Linear(t5_dim, t5_dim * 4, bias=True),
            FP32_SiLU(),
            torch.nn.Linear(t5_dim * 4, text_dim, bias=True),
        )
        self.t5_pooler = AttentionPool(t5_length, t5_dim, num_heads=8, output_dim=1024)
        self.style_embedder = torch.nn.Parameter(torch.randn(hidden_dim))
        self.patch_embedder = PatchEmbed(in_chans=in_channels)
        self.timestep_embedder = TimestepEmbedder()
        self.extra_embedder = torch.nn.Sequential(
            torch.nn.Linear(256 * 6 + 1024 + hidden_dim, hidden_dim * 4),
            FP32_SiLU(),
            torch.nn.Linear(hidden_dim * 4, hidden_dim),
        )

        # Transformer blocks
        self.num_layers_down = num_layers_down
        self.num_layers_up = num_layers_up
        self.blocks = torch.nn.ModuleList(
            [HunyuanDiTBlock(skip_connection=False) for _ in range(num_layers_down)] + \
            [HunyuanDiTBlock(skip_connection=True) for _ in range(num_layers_up)]
        )

        # Output layers
        self.final_layer = HunyuanDiTFinalLayer()
        self.out_channels = out_channels

    def prepare_text_emb(self, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5):
        text_emb_mask = text_emb_mask.bool()
        text_emb_mask_t5 = text_emb_mask_t5.bool()
        text_emb_t5 = self.t5_embedder(text_emb_t5)
        text_emb = torch.cat([text_emb, text_emb_t5], dim=1)
        text_emb_mask = torch.cat([text_emb_mask, text_emb_mask_t5], dim=-1)
        text_emb = torch.where(text_emb_mask.unsqueeze(2), text_emb, self.text_emb_padding.to(text_emb))
        return text_emb
    
    def prepare_extra_emb(self, text_emb_t5, timestep, size_emb, dtype, batch_size):
        # Text embedding
        pooled_text_emb_t5 = self.t5_pooler(text_emb_t5)

        # Timestep embedding
        timestep_emb = self.timestep_embedder(timestep)

        # Size embedding
        size_emb = timestep_embedding(size_emb.view(-1), 256).to(dtype)
        size_emb = size_emb.view(-1, 6 * 256)

        # Style embedding
        style_emb = repeat(self.style_embedder, "D -> B D", B=batch_size)

        # Concatenate all extra vectors
        extra_emb = torch.cat([pooled_text_emb_t5, size_emb, style_emb], dim=1)
        condition_emb = timestep_emb + self.extra_embedder(extra_emb)

        return condition_emb

    def unpatchify(self, x, h, w):
        return rearrange(x, "B (H W) (P Q C) -> B C (H P) (W Q)", H=h, W=w, P=2, Q=2)
    
    def build_mask(self, data, is_bound):
        _, _, H, W = data.shape
        h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
        w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
        border_width = (H + W) // 4
        pad = torch.ones_like(h) * border_width
        mask = torch.stack([
            pad if is_bound[0] else h + 1,
            pad if is_bound[1] else H - h,
            pad if is_bound[2] else w + 1,
            pad if is_bound[3] else W - w
        ]).min(dim=0).values
        mask = mask.clip(1, border_width)
        mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
        mask = rearrange(mask, "H W -> 1 H W")
        return mask
    
    def tiled_block_forward(self, block, hidden_states, condition_emb, text_emb, freq_cis_img, residual, torch_dtype, data_device, computation_device, tile_size, tile_stride):
        B, C, H, W = hidden_states.shape

        weight = torch.zeros((1, 1, H, W), dtype=torch_dtype, device=data_device)
        values = torch.zeros((B, C, H, W), dtype=torch_dtype, device=data_device)

        # Split tasks
        tasks = []
        for h in range(0, H, tile_stride):
            for w in range(0, W, tile_stride):
                if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
                    continue
                h_, w_ = h + tile_size, w + tile_size
                if h_ > H: h, h_ = H - tile_size, H
                if w_ > W: w, w_ = W - tile_size, W
                tasks.append((h, h_, w, w_))

        # Run
        for hl, hr, wl, wr in tasks:
            hidden_states_batch = hidden_states[:, :, hl:hr, wl:wr].to(computation_device)
            hidden_states_batch = rearrange(hidden_states_batch, "B C H W -> B (H W) C")
            if residual is not None:
                residual_batch = residual[:, :, hl:hr, wl:wr].to(computation_device)
                residual_batch = rearrange(residual_batch, "B C H W -> B (H W) C")
            else:
                residual_batch = None

            # Forward
            hidden_states_batch = block(hidden_states_batch, condition_emb, text_emb, freq_cis_img, residual_batch).to(data_device)
            hidden_states_batch = rearrange(hidden_states_batch, "B (H W) C -> B C H W", H=hr-hl)

            mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W))
            values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
            weight[:, :, hl:hr, wl:wr] += mask
        values /= weight
        return values

    def forward(
        self, hidden_states, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5, timestep, size_emb, freq_cis_img,
        tiled=False, tile_size=64, tile_stride=32,
        to_cache=False,
        use_gradient_checkpointing=False,
    ):
        # Embeddings
        text_emb = self.prepare_text_emb(text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5)
        condition_emb = self.prepare_extra_emb(text_emb_t5, timestep, size_emb, hidden_states.dtype, hidden_states.shape[0])
        
        # Input
        height, width = hidden_states.shape[-2], hidden_states.shape[-1]
        hidden_states = self.patch_embedder(hidden_states)

        # Blocks
        def create_custom_forward(module):
            def custom_forward(*inputs):
                return module(*inputs)
            return custom_forward
        if tiled:
            hidden_states = rearrange(hidden_states, "B (H W) C -> B C H W", H=height//2)
            residuals = []
            for block_id, block in enumerate(self.blocks):
                residual = residuals.pop() if block_id >= self.num_layers_down else None
                hidden_states = self.tiled_block_forward(
                    block, hidden_states, condition_emb, text_emb, freq_cis_img, residual,
                    torch_dtype=hidden_states.dtype, data_device=hidden_states.device, computation_device=hidden_states.device,
                    tile_size=tile_size, tile_stride=tile_stride
                )
                if block_id < self.num_layers_down - 2:
                    residuals.append(hidden_states)
            hidden_states = rearrange(hidden_states, "B C H W -> B (H W) C")
        else:
            residuals = []
            for block_id, block in enumerate(self.blocks):
                residual = residuals.pop() if block_id >= self.num_layers_down else None
                if self.training and use_gradient_checkpointing:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states, condition_emb, text_emb, freq_cis_img, residual,
                        use_reentrant=False,
                    )
                else:
                    hidden_states = block(hidden_states, condition_emb, text_emb, freq_cis_img, residual, to_cache=to_cache)
                if block_id < self.num_layers_down - 2:
                    residuals.append(hidden_states)

        # Output
        hidden_states = self.final_layer(hidden_states, condition_emb)
        hidden_states = self.unpatchify(hidden_states, height//2, width//2)
        hidden_states, _ = hidden_states.chunk(2, dim=1)
        return hidden_states
    
    @staticmethod
    def state_dict_converter():
        return HunyuanDiTStateDictConverter()



class HunyuanDiTStateDictConverter():
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        state_dict_ = {}
        for name, param in state_dict.items():
            name_ = name
            name_ = name_.replace(".default_modulation.", ".modulation.")
            name_ = name_.replace(".mlp.fc1.", ".mlp.0.")
            name_ = name_.replace(".mlp.fc2.", ".mlp.2.")
            name_ = name_.replace(".attn1.q_norm.", ".rota1.q_norm.")
            name_ = name_.replace(".attn2.q_norm.", ".rota2.q_norm.")
            name_ = name_.replace(".attn1.k_norm.", ".rota1.k_norm.")
            name_ = name_.replace(".attn2.k_norm.", ".rota2.k_norm.")
            name_ = name_.replace(".q_proj.", ".to_q.")
            name_ = name_.replace(".out_proj.", ".to_out.")
            name_ = name_.replace("text_embedding_padding", "text_emb_padding")
            name_ = name_.replace("mlp_t5.0.", "t5_embedder.0.")
            name_ = name_.replace("mlp_t5.2.", "t5_embedder.2.")
            name_ = name_.replace("pooler.", "t5_pooler.")
            name_ = name_.replace("x_embedder.", "patch_embedder.")
            name_ = name_.replace("t_embedder.", "timestep_embedder.")
            name_ = name_.replace("t5_pooler.to_q.", "t5_pooler.q_proj.")
            name_ = name_.replace("style_embedder.weight", "style_embedder")
            if ".kv_proj." in name_:
                param_k = param[:param.shape[0]//2]
                param_v = param[param.shape[0]//2:]
                state_dict_[name_.replace(".kv_proj.", ".to_k.")] = param_k
                state_dict_[name_.replace(".kv_proj.", ".to_v.")] = param_v
            elif ".Wqkv." in name_:
                param_q = param[:param.shape[0]//3]
                param_k = param[param.shape[0]//3:param.shape[0]//3*2]
                param_v = param[param.shape[0]//3*2:]
                state_dict_[name_.replace(".Wqkv.", ".to_q.")] = param_q
                state_dict_[name_.replace(".Wqkv.", ".to_k.")] = param_k
                state_dict_[name_.replace(".Wqkv.", ".to_v.")] = param_v
            elif "style_embedder" in name_:
                state_dict_[name_] = param.squeeze()
            else:
                state_dict_[name_] = param
        return state_dict_
    
    def from_civitai(self, state_dict):
        return self.from_diffusers(state_dict)