File size: 23,660 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os, torch, hashlib, json, importlib
from safetensors import safe_open
from torch import Tensor
from typing_extensions import Literal, TypeAlias
from typing import List

from .downloader import download_models, Preset_model_id, Preset_model_website

from .sd_text_encoder import SDTextEncoder
from .sd_unet import SDUNet
from .sd_vae_encoder import SDVAEEncoder
from .sd_vae_decoder import SDVAEDecoder
from .lora import SDLoRAFromCivitai, SDXLLoRAFromCivitai, GeneralLoRAFromPeft

from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sdxl_unet import SDXLUNet
from .sdxl_vae_decoder import SDXLVAEDecoder
from .sdxl_vae_encoder import SDXLVAEEncoder

from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
from .sd3_dit import SD3DiT
from .sd3_vae_decoder import SD3VAEDecoder
from .sd3_vae_encoder import SD3VAEEncoder

from .sd_controlnet import SDControlNet
from .sdxl_controlnet import SDXLControlNetUnion

from .sd_motion import SDMotionModel
from .sdxl_motion import SDXLMotionModel

from .svd_image_encoder import SVDImageEncoder
from .svd_unet import SVDUNet
from .svd_vae_decoder import SVDVAEDecoder
from .svd_vae_encoder import SVDVAEEncoder

from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder

from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from .hunyuan_dit import HunyuanDiT

from .flux_dit import FluxDiT
from .flux_text_encoder import FluxTextEncoder1, FluxTextEncoder2
from .flux_vae import FluxVAEEncoder, FluxVAEDecoder

from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs



def load_state_dict(file_path, torch_dtype=None):
    if file_path.endswith(".safetensors"):
        return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
    else:
        return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)


def load_state_dict_from_safetensors(file_path, torch_dtype=None):
    state_dict = {}
    with safe_open(file_path, framework="pt", device="cpu") as f:
        for k in f.keys():
            state_dict[k] = f.get_tensor(k)
            if torch_dtype is not None:
                state_dict[k] = state_dict[k].to(torch_dtype)
    return state_dict


def load_state_dict_from_bin(file_path, torch_dtype=None):
    state_dict = torch.load(file_path, map_location="cpu")
    if torch_dtype is not None:
        for i in state_dict:
            if isinstance(state_dict[i], torch.Tensor):
                state_dict[i] = state_dict[i].to(torch_dtype)
    return state_dict


def search_for_embeddings(state_dict):
    embeddings = []
    for k in state_dict:
        if isinstance(state_dict[k], torch.Tensor):
            embeddings.append(state_dict[k])
        elif isinstance(state_dict[k], dict):
            embeddings += search_for_embeddings(state_dict[k])
    return embeddings


def search_parameter(param, state_dict):
    for name, param_ in state_dict.items():
        if param.numel() == param_.numel():
            if param.shape == param_.shape:
                if torch.dist(param, param_) < 1e-3:
                    return name
            else:
                if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
                    return name
    return None


def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
    matched_keys = set()
    with torch.no_grad():
        for name in source_state_dict:
            rename = search_parameter(source_state_dict[name], target_state_dict)
            if rename is not None:
                print(f'"{name}": "{rename}",')
                matched_keys.add(rename)
            elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
                length = source_state_dict[name].shape[0] // 3
                rename = []
                for i in range(3):
                    rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
                if None not in rename:
                    print(f'"{name}": {rename},')
                    for rename_ in rename:
                        matched_keys.add(rename_)
    for name in target_state_dict:
        if name not in matched_keys:
            print("Cannot find", name, target_state_dict[name].shape)


def search_for_files(folder, extensions):
    files = []
    if os.path.isdir(folder):
        for file in sorted(os.listdir(folder)):
            files += search_for_files(os.path.join(folder, file), extensions)
    elif os.path.isfile(folder):
        for extension in extensions:
            if folder.endswith(extension):
                files.append(folder)
                break
    return files


def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
    keys = []
    for key, value in state_dict.items():
        if isinstance(key, str):
            if isinstance(value, Tensor):
                if with_shape:
                    shape = "_".join(map(str, list(value.shape)))
                    keys.append(key + ":" + shape)
                keys.append(key)
            elif isinstance(value, dict):
                keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
    keys.sort()
    keys_str = ",".join(keys)
    return keys_str


def split_state_dict_with_prefix(state_dict):
    keys = sorted([key for key in state_dict if isinstance(key, str)])
    prefix_dict = {}
    for key in  keys:
        prefix = key if "." not in key else key.split(".")[0]
        if prefix not in prefix_dict:
            prefix_dict[prefix] = []
        prefix_dict[prefix].append(key)
    state_dicts = []
    for prefix, keys in prefix_dict.items():
        sub_state_dict = {key: state_dict[key] for key in keys}
        state_dicts.append(sub_state_dict)
    return state_dicts


def hash_state_dict_keys(state_dict, with_shape=True):
    keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
    keys_str = keys_str.encode(encoding="UTF-8")
    return hashlib.md5(keys_str).hexdigest()


def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        print(f"    model_name: {model_name} model_class: {model_class.__name__}")
        state_dict_converter = model_class.state_dict_converter()
        if model_resource == "civitai":
            state_dict_results = state_dict_converter.from_civitai(state_dict)
        elif model_resource == "diffusers":
            state_dict_results = state_dict_converter.from_diffusers(state_dict)
        if isinstance(state_dict_results, tuple):
            model_state_dict, extra_kwargs = state_dict_results
            print(f"        This model is initialized with extra kwargs: {extra_kwargs}")
        else:
            model_state_dict, extra_kwargs = state_dict_results, {}
        torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
        model = model_class(**extra_kwargs).to(dtype=torch_dtype, device=device)
        model.load_state_dict(model_state_dict)
        loaded_model_names.append(model_name)
        loaded_models.append(model)
    return loaded_model_names, loaded_models


def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
        if torch_dtype == torch.float16 and hasattr(model, "half"):
            model = model.half()
        model = model.to(device=device)
        loaded_model_names.append(model_name)
        loaded_models.append(model)
    return loaded_model_names, loaded_models


def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
    print(f"    model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
    base_state_dict = base_model.state_dict()
    base_model.to("cpu")
    del base_model
    model = model_class(**extra_kwargs)
    model.load_state_dict(base_state_dict, strict=False)
    model.load_state_dict(state_dict, strict=False)
    model.to(dtype=torch_dtype, device=device)
    return model


def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
    loaded_model_names, loaded_models = [], []
    for model_name, model_class in zip(model_names, model_classes):
        while True:
            for model_id in range(len(model_manager.model)):
                base_model_name = model_manager.model_name[model_id]
                if base_model_name == model_name:
                    base_model_path = model_manager.model_path[model_id]
                    base_model = model_manager.model[model_id]
                    print(f"    Adding patch model to {base_model_name} ({base_model_path})")
                    patched_model = load_single_patch_model_from_single_file(
                        state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
                    loaded_model_names.append(base_model_name)
                    loaded_models.append(patched_model)
                    model_manager.model.pop(model_id)
                    model_manager.model_path.pop(model_id)
                    model_manager.model_name.pop(model_id)
                    break
            else:
                break
    return loaded_model_names, loaded_models



class ModelDetectorTemplate:
    def __init__(self):
        pass

    def match(self, file_path="", state_dict={}):
        return False
    
    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        return [], []
    


class ModelDetectorFromSingleFile:
    def __init__(self, model_loader_configs=[]):
        self.keys_hash_with_shape_dict = {}
        self.keys_hash_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
        self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
        if keys_hash is not None:
            self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            return True
        keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
        if keys_hash in self.keys_hash_dict:
            return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)

        # Load models with strict matching
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
            loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
            return loaded_model_names, loaded_models

        # Load models without strict matching
        # (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
        keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
        if keys_hash in self.keys_hash_dict:
            model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
            loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
            return loaded_model_names, loaded_models

        return loaded_model_names, loaded_models



class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
    def __init__(self, model_loader_configs=[]):
        super().__init__(model_loader_configs)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        splited_state_dict = split_state_dict_with_prefix(state_dict)
        for sub_state_dict in splited_state_dict:
            if super().match(file_path, sub_state_dict):
                return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        # Split the state_dict and load from each component
        splited_state_dict = split_state_dict_with_prefix(state_dict)
        valid_state_dict = {}
        for sub_state_dict in splited_state_dict:
            if super().match(file_path, sub_state_dict):
                valid_state_dict.update(sub_state_dict)
        if super().match(file_path, valid_state_dict):
            loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
        else:
            loaded_model_names, loaded_models = [], []
            for sub_state_dict in splited_state_dict:
                if super().match(file_path, sub_state_dict):
                    loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
                    loaded_model_names += loaded_model_names_
                    loaded_models += loaded_models_
        return loaded_model_names, loaded_models
    


class ModelDetectorFromHuggingfaceFolder:
    def __init__(self, model_loader_configs=[]):
        self.architecture_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
        self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)


    def match(self, file_path="", state_dict={}):
        if os.path.isfile(file_path):
            return False
        file_list = os.listdir(file_path)
        if "config.json" not in file_list:
            return False
        with open(os.path.join(file_path, "config.json"), "r") as f:
            config = json.load(f)
        if "architectures" not in config:
            return False
        return True


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
        with open(os.path.join(file_path, "config.json"), "r") as f:
            config = json.load(f)
        loaded_model_names, loaded_models = [], []
        for architecture in config["architectures"]:
            huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
            if redirected_architecture is not None:
                architecture = redirected_architecture
            model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
            loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
            loaded_model_names += loaded_model_names_
            loaded_models += loaded_models_
        return loaded_model_names, loaded_models
    


class ModelDetectorFromPatchedSingleFile:
    def __init__(self, model_loader_configs=[]):
        self.keys_hash_with_shape_dict = {}
        for metadata in model_loader_configs:
            self.add_model_metadata(*metadata)


    def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
        self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)


    def match(self, file_path="", state_dict={}):
        if os.path.isdir(file_path):
            return False
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            return True
        return False


    def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)

        # Load models with strict matching
        loaded_model_names, loaded_models = [], []
        keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
        if keys_hash_with_shape in self.keys_hash_with_shape_dict:
            model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
            loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
                state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
            loaded_model_names += loaded_model_names_
            loaded_models += loaded_models_
        return loaded_model_names, loaded_models



class ModelManager:
    def __init__(
        self,
        torch_dtype=torch.float16,
        device="cuda",
        model_id_list: List[Preset_model_id] = [],
        downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
        file_path_list: List[str] = [],
    ):
        self.torch_dtype = torch_dtype
        self.device = device
        self.model = []
        self.model_path = []
        self.model_name = []
        downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else []
        self.model_detector = [
            ModelDetectorFromSingleFile(model_loader_configs),
            ModelDetectorFromSplitedSingleFile(model_loader_configs),
            ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
            ModelDetectorFromPatchedSingleFile(patch_model_loader_configs),
        ]
        self.load_models(downloaded_files + file_path_list)


    def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
        print(f"Loading models from file: {file_path}")
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following models are loaded: {model_names}.")


    def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
        print(f"Loading models from folder: {file_path}")
        model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following models are loaded: {model_names}.")


    def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
        print(f"Loading patch models from file: {file_path}")
        model_names, models = load_patch_model_from_single_file(
            state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
        for model_name, model in zip(model_names, models):
            self.model.append(model)
            self.model_path.append(file_path)
            self.model_name.append(model_name)
        print(f"    The following patched models are loaded: {model_names}.")


    def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
        print(f"Loading LoRA models from file: {file_path}")
        if len(state_dict) == 0:
            state_dict = load_state_dict(file_path)
        for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
            for lora in [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), GeneralLoRAFromPeft()]:
                match_results = lora.match(model, state_dict)
                if match_results is not None:
                    print(f"    Adding LoRA to {model_name} ({model_path}).")
                    lora_prefix, model_resource = match_results
                    lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
                    break


    def load_model(self, file_path, model_names=None):
        print(f"Loading models from: {file_path}")
        if os.path.isfile(file_path):
            state_dict = load_state_dict(file_path)
        else:
            state_dict = None
        for model_detector in self.model_detector:
            if model_detector.match(file_path, state_dict):
                model_names, models = model_detector.load(
                    file_path, state_dict,
                    device=self.device, torch_dtype=self.torch_dtype,
                    allowed_model_names=model_names, model_manager=self
                )
                for model_name, model in zip(model_names, models):
                    self.model.append(model)
                    self.model_path.append(file_path)
                    self.model_name.append(model_name)
                print(f"    The following models are loaded: {model_names}.")
                break
        else:
            print(f"    We cannot detect the model type. No models are loaded.")
        

    def load_models(self, file_path_list, model_names=None):
        for file_path in file_path_list:
            self.load_model(file_path, model_names)

    
    def fetch_model(self, model_name, file_path=None, require_model_path=False):
        fetched_models = []
        fetched_model_paths = []
        for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
            if file_path is not None and file_path != model_path:
                continue
            if model_name == model_name_:
                fetched_models.append(model)
                fetched_model_paths.append(model_path)
        if len(fetched_models) == 0:
            print(f"No {model_name} models available.")
            return None
        if len(fetched_models) == 1:
            print(f"Using {model_name} from {fetched_model_paths[0]}.")
        else:
            print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
        if require_model_path:
            return fetched_models[0], fetched_model_paths[0]
        else:
            return fetched_models[0]
        

    def to(self, device):
        for model in self.model:
            model.to(device)