Spaces:
Running
on
Zero
Running
on
Zero
File size: 99,140 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
import torch, math
from .attention import Attention
from .tiler import TileWorker
class Timesteps(torch.nn.Module):
def __init__(self, num_channels):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) / half_dim
timesteps = timesteps.unsqueeze(-1)
emb = timesteps.float() * torch.exp(exponent)
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)
return emb
class GEGLU(torch.nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = torch.nn.Linear(dim_in, dim_out * 2)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * torch.nn.functional.gelu(gate)
class BasicTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads, attention_head_dim, cross_attention_dim):
super().__init__()
# 1. Self-Attn
self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True)
self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True)
# 2. Cross-Attn
self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True)
self.attn2 = Attention(q_dim=dim, kv_dim=cross_attention_dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True)
# 3. Feed-forward
self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True)
self.act_fn = GEGLU(dim, dim * 4)
self.ff = torch.nn.Linear(dim * 4, dim)
def forward(self, hidden_states, encoder_hidden_states, ipadapter_kwargs=None):
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
hidden_states = attn_output + hidden_states
# 2. Cross-Attention
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, ipadapter_kwargs=ipadapter_kwargs)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
ff_output = self.act_fn(norm_hidden_states)
ff_output = self.ff(ff_output)
hidden_states = ff_output + hidden_states
return hidden_states
class DownSampler(torch.nn.Module):
def __init__(self, channels, padding=1, extra_padding=False):
super().__init__()
self.conv = torch.nn.Conv2d(channels, channels, 3, stride=2, padding=padding)
self.extra_padding = extra_padding
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
if self.extra_padding:
hidden_states = torch.nn.functional.pad(hidden_states, (0, 1, 0, 1), mode="constant", value=0)
hidden_states = self.conv(hidden_states)
return hidden_states, time_emb, text_emb, res_stack
class UpSampler(torch.nn.Module):
def __init__(self, channels):
super().__init__()
self.conv = torch.nn.Conv2d(channels, channels, 3, padding=1)
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = self.conv(hidden_states)
return hidden_states, time_emb, text_emb, res_stack
class ResnetBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5):
super().__init__()
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels is not None:
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.nonlinearity = torch.nn.SiLU()
self.conv_shortcut = None
if in_channels != out_channels:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
x = hidden_states
x = self.norm1(x)
x = self.nonlinearity(x)
x = self.conv1(x)
if time_emb is not None:
emb = self.nonlinearity(time_emb)
emb = self.time_emb_proj(emb)[:, :, None, None]
x = x + emb
x = self.norm2(x)
x = self.nonlinearity(x)
x = self.conv2(x)
if self.conv_shortcut is not None:
hidden_states = self.conv_shortcut(hidden_states)
hidden_states = hidden_states + x
return hidden_states, time_emb, text_emb, res_stack
class AttentionBlock(torch.nn.Module):
def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, cross_attention_dim=None, norm_num_groups=32, eps=1e-5, need_proj_out=True):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
self.proj_in = torch.nn.Linear(in_channels, inner_dim)
self.transformer_blocks = torch.nn.ModuleList([
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim
)
for d in range(num_layers)
])
self.need_proj_out = need_proj_out
if need_proj_out:
self.proj_out = torch.nn.Linear(inner_dim, in_channels)
def forward(
self,
hidden_states, time_emb, text_emb, res_stack,
cross_frame_attention=False,
tiled=False, tile_size=64, tile_stride=32,
ipadapter_kwargs_list={},
**kwargs
):
batch, _, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
if cross_frame_attention:
hidden_states = hidden_states.reshape(1, batch * height * width, inner_dim)
encoder_hidden_states = text_emb.mean(dim=0, keepdim=True)
else:
encoder_hidden_states = text_emb
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
encoder_hidden_states = encoder_hidden_states.repeat(hidden_states.shape[0], 1, 1)
if tiled:
tile_size = min(tile_size, min(height, width))
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch, inner_dim, height, width)
def block_tile_forward(x):
b, c, h, w = x.shape
x = x.permute(0, 2, 3, 1).reshape(b, h*w, c)
x = block(x, encoder_hidden_states)
x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
return x
for block in self.transformer_blocks:
hidden_states = TileWorker().tiled_forward(
block_tile_forward,
hidden_states,
tile_size,
tile_stride,
tile_device=hidden_states.device,
tile_dtype=hidden_states.dtype
)
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
else:
for block_id, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
ipadapter_kwargs=ipadapter_kwargs_list.get(block_id, None)
)
if cross_frame_attention:
hidden_states = hidden_states.reshape(batch, height * width, inner_dim)
if self.need_proj_out:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = hidden_states + residual
else:
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
return hidden_states, time_emb, text_emb, res_stack
class PushBlock(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
res_stack.append(hidden_states)
return hidden_states, time_emb, text_emb, res_stack
class PopBlock(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs):
res_hidden_states = res_stack.pop()
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
return hidden_states, time_emb, text_emb, res_stack
class SDUNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.time_proj = Timesteps(320)
self.time_embedding = torch.nn.Sequential(
torch.nn.Linear(320, 1280),
torch.nn.SiLU(),
torch.nn.Linear(1280, 1280)
)
self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1)
self.blocks = torch.nn.ModuleList([
# CrossAttnDownBlock2D
ResnetBlock(320, 320, 1280),
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6),
PushBlock(),
ResnetBlock(320, 320, 1280),
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6),
PushBlock(),
DownSampler(320),
PushBlock(),
# CrossAttnDownBlock2D
ResnetBlock(320, 640, 1280),
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6),
PushBlock(),
ResnetBlock(640, 640, 1280),
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6),
PushBlock(),
DownSampler(640),
PushBlock(),
# CrossAttnDownBlock2D
ResnetBlock(640, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
PushBlock(),
ResnetBlock(1280, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
PushBlock(),
DownSampler(1280),
PushBlock(),
# DownBlock2D
ResnetBlock(1280, 1280, 1280),
PushBlock(),
ResnetBlock(1280, 1280, 1280),
PushBlock(),
# UNetMidBlock2DCrossAttn
ResnetBlock(1280, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
ResnetBlock(1280, 1280, 1280),
# UpBlock2D
PopBlock(),
ResnetBlock(2560, 1280, 1280),
PopBlock(),
ResnetBlock(2560, 1280, 1280),
PopBlock(),
ResnetBlock(2560, 1280, 1280),
UpSampler(1280),
# CrossAttnUpBlock2D
PopBlock(),
ResnetBlock(2560, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(2560, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(1920, 1280, 1280),
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6),
UpSampler(1280),
# CrossAttnUpBlock2D
PopBlock(),
ResnetBlock(1920, 640, 1280),
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(1280, 640, 1280),
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(960, 640, 1280),
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6),
UpSampler(640),
# CrossAttnUpBlock2D
PopBlock(),
ResnetBlock(960, 320, 1280),
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(640, 320, 1280),
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6),
PopBlock(),
ResnetBlock(640, 320, 1280),
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6),
])
self.conv_norm_out = torch.nn.GroupNorm(num_channels=320, num_groups=32, eps=1e-5)
self.conv_act = torch.nn.SiLU()
self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=3, padding=1)
def forward(self, sample, timestep, encoder_hidden_states, **kwargs):
# 1. time
time_emb = self.time_proj(timestep).to(sample.dtype)
time_emb = self.time_embedding(time_emb)
# 2. pre-process
hidden_states = self.conv_in(sample)
text_emb = encoder_hidden_states
res_stack = [hidden_states]
# 3. blocks
for i, block in enumerate(self.blocks):
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
# 4. output
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
@staticmethod
def state_dict_converter():
return SDUNetStateDictConverter()
class SDUNetStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
# architecture
block_types = [
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock',
'ResnetBlock', 'AttentionBlock', 'ResnetBlock',
'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'UpSampler',
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler',
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler',
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock'
]
# Rename each parameter
name_list = sorted([name for name in state_dict])
rename_dict = {}
block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1}
last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""}
for name in name_list:
names = name.split(".")
if names[0] in ["conv_in", "conv_norm_out", "conv_out"]:
pass
elif names[0] in ["time_embedding", "add_embedding"]:
if names[0] == "add_embedding":
names[0] = "add_time_embedding"
names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]]
elif names[0] in ["down_blocks", "mid_block", "up_blocks"]:
if names[0] == "mid_block":
names.insert(1, "0")
block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]]
block_type_with_id = ".".join(names[:4])
if block_type_with_id != last_block_type_with_id[block_type]:
block_id[block_type] += 1
last_block_type_with_id[block_type] = block_type_with_id
while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type:
block_id[block_type] += 1
block_type_with_id = ".".join(names[:4])
names = ["blocks", str(block_id[block_type])] + names[4:]
if "ff" in names:
ff_index = names.index("ff")
component = ".".join(names[ff_index:ff_index+3])
component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component]
names = names[:ff_index] + [component] + names[ff_index+3:]
if "to_out" in names:
names.pop(names.index("to_out") + 1)
else:
raise ValueError(f"Unknown parameters: {name}")
rename_dict[name] = ".".join(names)
# Convert state_dict
state_dict_ = {}
for name, param in state_dict.items():
if ".proj_in." in name or ".proj_out." in name:
param = param.squeeze()
state_dict_[rename_dict[name]] = param
return state_dict_
def from_civitai(self, state_dict):
rename_dict = {
"model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias",
"model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight",
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias",
"model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight",
"model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias",
"model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight",
"model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias",
"model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight",
"model.diffusion_model.input_blocks.1.1.norm.bias": "blocks.1.norm.bias",
"model.diffusion_model.input_blocks.1.1.norm.weight": "blocks.1.norm.weight",
"model.diffusion_model.input_blocks.1.1.proj_in.bias": "blocks.1.proj_in.bias",
"model.diffusion_model.input_blocks.1.1.proj_in.weight": "blocks.1.proj_in.weight",
"model.diffusion_model.input_blocks.1.1.proj_out.bias": "blocks.1.proj_out.bias",
"model.diffusion_model.input_blocks.1.1.proj_out.weight": "blocks.1.proj_out.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.1.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.1.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.1.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.1.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.1.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.1.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.1.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.1.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.1.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.1.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.1.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.1.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.1.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.1.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.1.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.1.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.1.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.1.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.1.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.1.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias",
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight",
"model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "blocks.24.norm1.bias",
"model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "blocks.24.norm1.weight",
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "blocks.24.conv1.bias",
"model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "blocks.24.conv1.weight",
"model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "blocks.24.norm2.bias",
"model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "blocks.24.norm2.weight",
"model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "blocks.24.conv2.bias",
"model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "blocks.24.conv2.weight",
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "blocks.26.time_emb_proj.bias",
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "blocks.26.time_emb_proj.weight",
"model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "blocks.26.norm1.bias",
"model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "blocks.26.norm1.weight",
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "blocks.26.conv1.bias",
"model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "blocks.26.conv1.weight",
"model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "blocks.26.norm2.bias",
"model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "blocks.26.norm2.weight",
"model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "blocks.26.conv2.bias",
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "blocks.26.conv2.weight",
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.3.time_emb_proj.bias",
"model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.3.time_emb_proj.weight",
"model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.3.norm1.bias",
"model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.3.norm1.weight",
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.3.conv1.bias",
"model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.3.conv1.weight",
"model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.3.norm2.bias",
"model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.3.norm2.weight",
"model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.3.conv2.bias",
"model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.3.conv2.weight",
"model.diffusion_model.input_blocks.2.1.norm.bias": "blocks.4.norm.bias",
"model.diffusion_model.input_blocks.2.1.norm.weight": "blocks.4.norm.weight",
"model.diffusion_model.input_blocks.2.1.proj_in.bias": "blocks.4.proj_in.bias",
"model.diffusion_model.input_blocks.2.1.proj_in.weight": "blocks.4.proj_in.weight",
"model.diffusion_model.input_blocks.2.1.proj_out.bias": "blocks.4.proj_out.bias",
"model.diffusion_model.input_blocks.2.1.proj_out.weight": "blocks.4.proj_out.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.4.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.4.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.4.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.4.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.4.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.4.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.4.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.4.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.4.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.4.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.4.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.4.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.4.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.4.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.4.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.4.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.4.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.4.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.4.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.4.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.3.0.op.bias": "blocks.6.conv.bias",
"model.diffusion_model.input_blocks.3.0.op.weight": "blocks.6.conv.weight",
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.8.time_emb_proj.bias",
"model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.8.time_emb_proj.weight",
"model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.8.norm1.bias",
"model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.8.norm1.weight",
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.8.conv1.bias",
"model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.8.conv1.weight",
"model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.8.norm2.bias",
"model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.8.norm2.weight",
"model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.8.conv2.bias",
"model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.8.conv2.weight",
"model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.8.conv_shortcut.bias",
"model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.8.conv_shortcut.weight",
"model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.9.norm.bias",
"model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.9.norm.weight",
"model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.9.proj_in.bias",
"model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.9.proj_in.weight",
"model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.9.proj_out.bias",
"model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.9.proj_out.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.9.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.9.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.9.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.9.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.9.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.9.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.9.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.9.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.9.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.9.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.9.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.9.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.9.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.9.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.9.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.9.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.9.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.9.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.9.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.9.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.11.time_emb_proj.bias",
"model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.11.time_emb_proj.weight",
"model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.11.norm1.bias",
"model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.11.norm1.weight",
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.11.conv1.bias",
"model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.11.conv1.weight",
"model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.11.norm2.bias",
"model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.11.norm2.weight",
"model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.11.conv2.bias",
"model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.11.conv2.weight",
"model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.12.norm.bias",
"model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.12.norm.weight",
"model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.12.proj_in.bias",
"model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.12.proj_in.weight",
"model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.12.proj_out.bias",
"model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.12.proj_out.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.12.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.12.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.12.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.12.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.12.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.12.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.12.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.12.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.12.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.12.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.12.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.12.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.12.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.12.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.12.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.12.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.12.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.12.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.12.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.12.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.6.0.op.bias": "blocks.14.conv.bias",
"model.diffusion_model.input_blocks.6.0.op.weight": "blocks.14.conv.weight",
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.16.time_emb_proj.bias",
"model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.16.time_emb_proj.weight",
"model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.16.norm1.bias",
"model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.16.norm1.weight",
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.16.conv1.bias",
"model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.16.conv1.weight",
"model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.16.norm2.bias",
"model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.16.norm2.weight",
"model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.16.conv2.bias",
"model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.16.conv2.weight",
"model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.16.conv_shortcut.bias",
"model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.16.conv_shortcut.weight",
"model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.17.norm.bias",
"model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.17.norm.weight",
"model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.17.proj_in.bias",
"model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.17.proj_in.weight",
"model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.17.proj_out.bias",
"model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.17.proj_out.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.17.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.17.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.17.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.17.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.17.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.17.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.17.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.17.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.17.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.17.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.17.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.17.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.17.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.17.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.17.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.17.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.17.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.17.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.17.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.17.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.19.time_emb_proj.bias",
"model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.19.time_emb_proj.weight",
"model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.19.norm1.bias",
"model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.19.norm1.weight",
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.19.conv1.bias",
"model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.19.conv1.weight",
"model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.19.norm2.bias",
"model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.19.norm2.weight",
"model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.19.conv2.bias",
"model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.19.conv2.weight",
"model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.20.norm.bias",
"model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.20.norm.weight",
"model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.20.proj_in.bias",
"model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.20.proj_in.weight",
"model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.20.proj_out.bias",
"model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.20.proj_out.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.20.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.20.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.20.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.20.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.20.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.20.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.20.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.20.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.20.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.20.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.20.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.20.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.20.transformer_blocks.0.ff.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.20.transformer_blocks.0.ff.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.20.transformer_blocks.0.norm1.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.20.transformer_blocks.0.norm1.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.20.transformer_blocks.0.norm2.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.20.transformer_blocks.0.norm2.weight",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.20.transformer_blocks.0.norm3.bias",
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.20.transformer_blocks.0.norm3.weight",
"model.diffusion_model.input_blocks.9.0.op.bias": "blocks.22.conv.bias",
"model.diffusion_model.input_blocks.9.0.op.weight": "blocks.22.conv.weight",
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.28.time_emb_proj.bias",
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.28.time_emb_proj.weight",
"model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.28.norm1.bias",
"model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.28.norm1.weight",
"model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.28.conv1.bias",
"model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.28.conv1.weight",
"model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.28.norm2.bias",
"model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.28.norm2.weight",
"model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.28.conv2.bias",
"model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.28.conv2.weight",
"model.diffusion_model.middle_block.1.norm.bias": "blocks.29.norm.bias",
"model.diffusion_model.middle_block.1.norm.weight": "blocks.29.norm.weight",
"model.diffusion_model.middle_block.1.proj_in.bias": "blocks.29.proj_in.bias",
"model.diffusion_model.middle_block.1.proj_in.weight": "blocks.29.proj_in.weight",
"model.diffusion_model.middle_block.1.proj_out.bias": "blocks.29.proj_out.bias",
"model.diffusion_model.middle_block.1.proj_out.weight": "blocks.29.proj_out.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.29.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.29.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.29.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.29.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.29.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.29.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.29.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.29.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.29.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.29.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.29.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.29.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.29.transformer_blocks.0.ff.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.29.transformer_blocks.0.ff.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.29.transformer_blocks.0.norm1.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.29.transformer_blocks.0.norm1.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.29.transformer_blocks.0.norm2.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.29.transformer_blocks.0.norm2.weight",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.29.transformer_blocks.0.norm3.bias",
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.29.transformer_blocks.0.norm3.weight",
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.30.time_emb_proj.bias",
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.30.time_emb_proj.weight",
"model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.30.norm1.bias",
"model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.30.norm1.weight",
"model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.30.conv1.bias",
"model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.30.conv1.weight",
"model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.30.norm2.bias",
"model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.30.norm2.weight",
"model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.30.conv2.bias",
"model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.30.conv2.weight",
"model.diffusion_model.out.0.bias": "conv_norm_out.bias",
"model.diffusion_model.out.0.weight": "conv_norm_out.weight",
"model.diffusion_model.out.2.bias": "conv_out.bias",
"model.diffusion_model.out.2.weight": "conv_out.weight",
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.32.time_emb_proj.bias",
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.32.time_emb_proj.weight",
"model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.32.norm1.bias",
"model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.32.norm1.weight",
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.32.conv1.bias",
"model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.32.conv1.weight",
"model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.32.norm2.bias",
"model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.32.norm2.weight",
"model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.32.conv2.bias",
"model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.32.conv2.weight",
"model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.32.conv_shortcut.bias",
"model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.32.conv_shortcut.weight",
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.34.time_emb_proj.bias",
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.34.time_emb_proj.weight",
"model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.34.norm1.bias",
"model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.34.norm1.weight",
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.34.conv1.bias",
"model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.34.conv1.weight",
"model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.34.norm2.bias",
"model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.34.norm2.weight",
"model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.34.conv2.bias",
"model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.34.conv2.weight",
"model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.34.conv_shortcut.bias",
"model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.34.conv_shortcut.weight",
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "blocks.62.time_emb_proj.bias",
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "blocks.62.time_emb_proj.weight",
"model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "blocks.62.norm1.bias",
"model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "blocks.62.norm1.weight",
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "blocks.62.conv1.bias",
"model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "blocks.62.conv1.weight",
"model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "blocks.62.norm2.bias",
"model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "blocks.62.norm2.weight",
"model.diffusion_model.output_blocks.10.0.out_layers.3.bias": "blocks.62.conv2.bias",
"model.diffusion_model.output_blocks.10.0.out_layers.3.weight": "blocks.62.conv2.weight",
"model.diffusion_model.output_blocks.10.0.skip_connection.bias": "blocks.62.conv_shortcut.bias",
"model.diffusion_model.output_blocks.10.0.skip_connection.weight": "blocks.62.conv_shortcut.weight",
"model.diffusion_model.output_blocks.10.1.norm.bias": "blocks.63.norm.bias",
"model.diffusion_model.output_blocks.10.1.norm.weight": "blocks.63.norm.weight",
"model.diffusion_model.output_blocks.10.1.proj_in.bias": "blocks.63.proj_in.bias",
"model.diffusion_model.output_blocks.10.1.proj_in.weight": "blocks.63.proj_in.weight",
"model.diffusion_model.output_blocks.10.1.proj_out.bias": "blocks.63.proj_out.bias",
"model.diffusion_model.output_blocks.10.1.proj_out.weight": "blocks.63.proj_out.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight": "blocks.63.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.63.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.63.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight": "blocks.63.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight": "blocks.63.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight": "blocks.63.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.63.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.63.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight": "blocks.63.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight": "blocks.63.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.63.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.63.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias": "blocks.63.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight": "blocks.63.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias": "blocks.63.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight": "blocks.63.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias": "blocks.63.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "blocks.63.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "blocks.63.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "blocks.63.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "blocks.65.time_emb_proj.bias",
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "blocks.65.time_emb_proj.weight",
"model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "blocks.65.norm1.bias",
"model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "blocks.65.norm1.weight",
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "blocks.65.conv1.bias",
"model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "blocks.65.conv1.weight",
"model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "blocks.65.norm2.bias",
"model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "blocks.65.norm2.weight",
"model.diffusion_model.output_blocks.11.0.out_layers.3.bias": "blocks.65.conv2.bias",
"model.diffusion_model.output_blocks.11.0.out_layers.3.weight": "blocks.65.conv2.weight",
"model.diffusion_model.output_blocks.11.0.skip_connection.bias": "blocks.65.conv_shortcut.bias",
"model.diffusion_model.output_blocks.11.0.skip_connection.weight": "blocks.65.conv_shortcut.weight",
"model.diffusion_model.output_blocks.11.1.norm.bias": "blocks.66.norm.bias",
"model.diffusion_model.output_blocks.11.1.norm.weight": "blocks.66.norm.weight",
"model.diffusion_model.output_blocks.11.1.proj_in.bias": "blocks.66.proj_in.bias",
"model.diffusion_model.output_blocks.11.1.proj_in.weight": "blocks.66.proj_in.weight",
"model.diffusion_model.output_blocks.11.1.proj_out.bias": "blocks.66.proj_out.bias",
"model.diffusion_model.output_blocks.11.1.proj_out.weight": "blocks.66.proj_out.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight": "blocks.66.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.66.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.66.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight": "blocks.66.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight": "blocks.66.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight": "blocks.66.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.66.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.66.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight": "blocks.66.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight": "blocks.66.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.66.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.66.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias": "blocks.66.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight": "blocks.66.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias": "blocks.66.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight": "blocks.66.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias": "blocks.66.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "blocks.66.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "blocks.66.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "blocks.66.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.36.time_emb_proj.bias",
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.36.time_emb_proj.weight",
"model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.36.norm1.bias",
"model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.36.norm1.weight",
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.36.conv1.bias",
"model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.36.conv1.weight",
"model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.36.norm2.bias",
"model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.36.norm2.weight",
"model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.36.conv2.bias",
"model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.36.conv2.weight",
"model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.36.conv_shortcut.bias",
"model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.36.conv_shortcut.weight",
"model.diffusion_model.output_blocks.2.1.conv.bias": "blocks.37.conv.bias",
"model.diffusion_model.output_blocks.2.1.conv.weight": "blocks.37.conv.weight",
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.39.time_emb_proj.bias",
"model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.39.time_emb_proj.weight",
"model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.39.norm1.bias",
"model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.39.norm1.weight",
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.39.conv1.bias",
"model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.39.conv1.weight",
"model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.39.norm2.bias",
"model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.39.norm2.weight",
"model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.39.conv2.bias",
"model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.39.conv2.weight",
"model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.39.conv_shortcut.bias",
"model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.39.conv_shortcut.weight",
"model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.40.norm.bias",
"model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.40.norm.weight",
"model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.40.proj_in.bias",
"model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.40.proj_in.weight",
"model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.40.proj_out.bias",
"model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.40.proj_out.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.40.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.40.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.40.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.40.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.40.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.40.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.40.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.40.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.40.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.40.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.40.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.40.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.40.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.40.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.40.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.40.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.40.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.40.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.40.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.40.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.42.time_emb_proj.bias",
"model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.42.time_emb_proj.weight",
"model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.42.norm1.bias",
"model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.42.norm1.weight",
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.42.conv1.bias",
"model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.42.conv1.weight",
"model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.42.norm2.bias",
"model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.42.norm2.weight",
"model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.42.conv2.bias",
"model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.42.conv2.weight",
"model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.42.conv_shortcut.bias",
"model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.42.conv_shortcut.weight",
"model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.43.norm.bias",
"model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.43.norm.weight",
"model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.43.proj_in.bias",
"model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.43.proj_in.weight",
"model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.43.proj_out.bias",
"model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.43.proj_out.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.43.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.43.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.43.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.43.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.43.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.43.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.43.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.43.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.43.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.43.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.43.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.43.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.43.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.43.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.43.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.43.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.43.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.43.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.43.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.43.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.45.time_emb_proj.bias",
"model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.45.time_emb_proj.weight",
"model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.45.norm1.bias",
"model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.45.norm1.weight",
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.45.conv1.bias",
"model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.45.conv1.weight",
"model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.45.norm2.bias",
"model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.45.norm2.weight",
"model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.45.conv2.bias",
"model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.45.conv2.weight",
"model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.45.conv_shortcut.bias",
"model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.45.conv_shortcut.weight",
"model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.46.norm.bias",
"model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.46.norm.weight",
"model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.46.proj_in.bias",
"model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.46.proj_in.weight",
"model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.46.proj_out.bias",
"model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.46.proj_out.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.46.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.46.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.46.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.46.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.46.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.46.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.46.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.46.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.46.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.46.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.46.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.46.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.46.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.46.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.46.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.46.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.46.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.46.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.46.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.46.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.47.conv.bias",
"model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.47.conv.weight",
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.49.time_emb_proj.bias",
"model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.49.time_emb_proj.weight",
"model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.49.norm1.bias",
"model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.49.norm1.weight",
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.49.conv1.bias",
"model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.49.conv1.weight",
"model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.49.norm2.bias",
"model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.49.norm2.weight",
"model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.49.conv2.bias",
"model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.49.conv2.weight",
"model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.49.conv_shortcut.bias",
"model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.49.conv_shortcut.weight",
"model.diffusion_model.output_blocks.6.1.norm.bias": "blocks.50.norm.bias",
"model.diffusion_model.output_blocks.6.1.norm.weight": "blocks.50.norm.weight",
"model.diffusion_model.output_blocks.6.1.proj_in.bias": "blocks.50.proj_in.bias",
"model.diffusion_model.output_blocks.6.1.proj_in.weight": "blocks.50.proj_in.weight",
"model.diffusion_model.output_blocks.6.1.proj_out.bias": "blocks.50.proj_out.bias",
"model.diffusion_model.output_blocks.6.1.proj_out.weight": "blocks.50.proj_out.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight": "blocks.50.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.50.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.50.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight": "blocks.50.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight": "blocks.50.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight": "blocks.50.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.50.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.50.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight": "blocks.50.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight": "blocks.50.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.50.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.50.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias": "blocks.50.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight": "blocks.50.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias": "blocks.50.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight": "blocks.50.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias": "blocks.50.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "blocks.50.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "blocks.50.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "blocks.50.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.52.time_emb_proj.bias",
"model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.52.time_emb_proj.weight",
"model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.52.norm1.bias",
"model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.52.norm1.weight",
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.52.conv1.bias",
"model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.52.conv1.weight",
"model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.52.norm2.bias",
"model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.52.norm2.weight",
"model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.52.conv2.bias",
"model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.52.conv2.weight",
"model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.52.conv_shortcut.bias",
"model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.52.conv_shortcut.weight",
"model.diffusion_model.output_blocks.7.1.norm.bias": "blocks.53.norm.bias",
"model.diffusion_model.output_blocks.7.1.norm.weight": "blocks.53.norm.weight",
"model.diffusion_model.output_blocks.7.1.proj_in.bias": "blocks.53.proj_in.bias",
"model.diffusion_model.output_blocks.7.1.proj_in.weight": "blocks.53.proj_in.weight",
"model.diffusion_model.output_blocks.7.1.proj_out.bias": "blocks.53.proj_out.bias",
"model.diffusion_model.output_blocks.7.1.proj_out.weight": "blocks.53.proj_out.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.53.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.53.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.53.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.53.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.53.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.53.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.53.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.53.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.53.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.53.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.53.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.53.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.53.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.53.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.53.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.53.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.53.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.53.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.53.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.53.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.55.time_emb_proj.bias",
"model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.55.time_emb_proj.weight",
"model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.55.norm1.bias",
"model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.55.norm1.weight",
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.55.conv1.bias",
"model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.55.conv1.weight",
"model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.55.norm2.bias",
"model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.55.norm2.weight",
"model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.55.conv2.bias",
"model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.55.conv2.weight",
"model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.55.conv_shortcut.bias",
"model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.55.conv_shortcut.weight",
"model.diffusion_model.output_blocks.8.1.norm.bias": "blocks.56.norm.bias",
"model.diffusion_model.output_blocks.8.1.norm.weight": "blocks.56.norm.weight",
"model.diffusion_model.output_blocks.8.1.proj_in.bias": "blocks.56.proj_in.bias",
"model.diffusion_model.output_blocks.8.1.proj_in.weight": "blocks.56.proj_in.weight",
"model.diffusion_model.output_blocks.8.1.proj_out.bias": "blocks.56.proj_out.bias",
"model.diffusion_model.output_blocks.8.1.proj_out.weight": "blocks.56.proj_out.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.56.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.56.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.56.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.56.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.56.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.56.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.56.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.56.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.56.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.56.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.56.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.56.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.56.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.56.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.56.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.56.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.56.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.56.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.56.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.56.transformer_blocks.0.norm3.weight",
"model.diffusion_model.output_blocks.8.2.conv.bias": "blocks.57.conv.bias",
"model.diffusion_model.output_blocks.8.2.conv.weight": "blocks.57.conv.weight",
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "blocks.59.time_emb_proj.bias",
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "blocks.59.time_emb_proj.weight",
"model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "blocks.59.norm1.bias",
"model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "blocks.59.norm1.weight",
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "blocks.59.conv1.bias",
"model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "blocks.59.conv1.weight",
"model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "blocks.59.norm2.bias",
"model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "blocks.59.norm2.weight",
"model.diffusion_model.output_blocks.9.0.out_layers.3.bias": "blocks.59.conv2.bias",
"model.diffusion_model.output_blocks.9.0.out_layers.3.weight": "blocks.59.conv2.weight",
"model.diffusion_model.output_blocks.9.0.skip_connection.bias": "blocks.59.conv_shortcut.bias",
"model.diffusion_model.output_blocks.9.0.skip_connection.weight": "blocks.59.conv_shortcut.weight",
"model.diffusion_model.output_blocks.9.1.norm.bias": "blocks.60.norm.bias",
"model.diffusion_model.output_blocks.9.1.norm.weight": "blocks.60.norm.weight",
"model.diffusion_model.output_blocks.9.1.proj_in.bias": "blocks.60.proj_in.bias",
"model.diffusion_model.output_blocks.9.1.proj_in.weight": "blocks.60.proj_in.weight",
"model.diffusion_model.output_blocks.9.1.proj_out.bias": "blocks.60.proj_out.bias",
"model.diffusion_model.output_blocks.9.1.proj_out.weight": "blocks.60.proj_out.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight": "blocks.60.transformer_blocks.0.attn1.to_k.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.60.transformer_blocks.0.attn1.to_out.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.60.transformer_blocks.0.attn1.to_out.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight": "blocks.60.transformer_blocks.0.attn1.to_q.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight": "blocks.60.transformer_blocks.0.attn1.to_v.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight": "blocks.60.transformer_blocks.0.attn2.to_k.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.60.transformer_blocks.0.attn2.to_out.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.60.transformer_blocks.0.attn2.to_out.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight": "blocks.60.transformer_blocks.0.attn2.to_q.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight": "blocks.60.transformer_blocks.0.attn2.to_v.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.60.transformer_blocks.0.act_fn.proj.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.60.transformer_blocks.0.act_fn.proj.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias": "blocks.60.transformer_blocks.0.ff.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight": "blocks.60.transformer_blocks.0.ff.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias": "blocks.60.transformer_blocks.0.norm1.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight": "blocks.60.transformer_blocks.0.norm1.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias": "blocks.60.transformer_blocks.0.norm2.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight": "blocks.60.transformer_blocks.0.norm2.weight",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias": "blocks.60.transformer_blocks.0.norm3.bias",
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight": "blocks.60.transformer_blocks.0.norm3.weight",
"model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias",
"model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight",
"model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias",
"model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight",
}
state_dict_ = {}
for name in state_dict:
if name in rename_dict:
param = state_dict[name]
if ".proj_in." in name or ".proj_out." in name:
param = param.squeeze()
state_dict_[rename_dict[name]] = param
return state_dict_ |