File size: 17,272 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
from .sd_unet import ResnetBlock, DownSampler
from .sd_vae_decoder import VAEAttentionBlock
from .tiler import TileWorker
from einops import rearrange


class SDVAEEncoder(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.scaling_factor = 0.18215
        self.quant_conv = torch.nn.Conv2d(8, 8, kernel_size=1)
        self.conv_in = torch.nn.Conv2d(3, 128, kernel_size=3, padding=1)

        self.blocks = torch.nn.ModuleList([
            # DownEncoderBlock2D
            ResnetBlock(128, 128, eps=1e-6),
            ResnetBlock(128, 128, eps=1e-6),
            DownSampler(128, padding=0, extra_padding=True),
            # DownEncoderBlock2D
            ResnetBlock(128, 256, eps=1e-6),
            ResnetBlock(256, 256, eps=1e-6),
            DownSampler(256, padding=0, extra_padding=True),
            # DownEncoderBlock2D
            ResnetBlock(256, 512, eps=1e-6),
            ResnetBlock(512, 512, eps=1e-6),
            DownSampler(512, padding=0, extra_padding=True),
            # DownEncoderBlock2D
            ResnetBlock(512, 512, eps=1e-6),
            ResnetBlock(512, 512, eps=1e-6),
            # UNetMidBlock2D
            ResnetBlock(512, 512, eps=1e-6),
            VAEAttentionBlock(1, 512, 512, 1, eps=1e-6),
            ResnetBlock(512, 512, eps=1e-6),
        ])

        self.conv_norm_out = torch.nn.GroupNorm(num_channels=512, num_groups=32, eps=1e-6)
        self.conv_act = torch.nn.SiLU()
        self.conv_out = torch.nn.Conv2d(512, 8, kernel_size=3, padding=1)

    def tiled_forward(self, sample, tile_size=64, tile_stride=32):
        hidden_states = TileWorker().tiled_forward(
            lambda x: self.forward(x),
            sample,
            tile_size,
            tile_stride,
            tile_device=sample.device,
            tile_dtype=sample.dtype
        )
        return hidden_states

    def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs):
        original_dtype = sample.dtype
        sample = sample.to(dtype=next(iter(self.parameters())).dtype)
        # For VAE Decoder, we do not need to apply the tiler on each layer.
        if tiled:
            return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride)
        
        # 1. pre-process
        hidden_states = self.conv_in(sample)
        time_emb = None
        text_emb = None
        res_stack = None

        # 2. blocks
        for i, block in enumerate(self.blocks):
            hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
        
        # 3. output
        hidden_states = self.conv_norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)
        hidden_states = self.quant_conv(hidden_states)
        hidden_states = hidden_states[:, :4]
        hidden_states *= self.scaling_factor
        hidden_states = hidden_states.to(original_dtype)

        return hidden_states
    
    def encode_video(self, sample, batch_size=8):
        B = sample.shape[0]
        hidden_states = []

        for i in range(0, sample.shape[2], batch_size):

            j = min(i + batch_size, sample.shape[2])
            sample_batch = rearrange(sample[:,:,i:j], "B C T H W -> (B T) C H W")

            hidden_states_batch = self(sample_batch)
            hidden_states_batch = rearrange(hidden_states_batch, "(B T) C H W -> B C T H W", B=B)

            hidden_states.append(hidden_states_batch)
        
        hidden_states = torch.concat(hidden_states, dim=2)
        return hidden_states
    
    @staticmethod
    def state_dict_converter():
        return SDVAEEncoderStateDictConverter()
    

class SDVAEEncoderStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        # architecture
        block_types = [
            'ResnetBlock', 'ResnetBlock', 'DownSampler',
            'ResnetBlock', 'ResnetBlock', 'DownSampler',
            'ResnetBlock', 'ResnetBlock', 'DownSampler',
            'ResnetBlock', 'ResnetBlock',
            'ResnetBlock', 'VAEAttentionBlock', 'ResnetBlock'
        ]

        # Rename each parameter
        local_rename_dict = {
            "quant_conv": "quant_conv",
            "encoder.conv_in": "conv_in",
            "encoder.mid_block.attentions.0.group_norm": "blocks.12.norm",
            "encoder.mid_block.attentions.0.to_q": "blocks.12.transformer_blocks.0.to_q",
            "encoder.mid_block.attentions.0.to_k": "blocks.12.transformer_blocks.0.to_k",
            "encoder.mid_block.attentions.0.to_v": "blocks.12.transformer_blocks.0.to_v",
            "encoder.mid_block.attentions.0.to_out.0": "blocks.12.transformer_blocks.0.to_out",
            "encoder.mid_block.resnets.0.norm1": "blocks.11.norm1",
            "encoder.mid_block.resnets.0.conv1": "blocks.11.conv1",
            "encoder.mid_block.resnets.0.norm2": "blocks.11.norm2",
            "encoder.mid_block.resnets.0.conv2": "blocks.11.conv2",
            "encoder.mid_block.resnets.1.norm1": "blocks.13.norm1",
            "encoder.mid_block.resnets.1.conv1": "blocks.13.conv1",
            "encoder.mid_block.resnets.1.norm2": "blocks.13.norm2",
            "encoder.mid_block.resnets.1.conv2": "blocks.13.conv2",
            "encoder.conv_norm_out": "conv_norm_out",
            "encoder.conv_out": "conv_out",
        }
        name_list = sorted([name for name in state_dict])
        rename_dict = {}
        block_id = {"ResnetBlock": -1, "DownSampler": -1, "UpSampler": -1}
        last_block_type_with_id = {"ResnetBlock": "", "DownSampler": "", "UpSampler": ""}
        for name in name_list:
            names = name.split(".")
            name_prefix = ".".join(names[:-1])
            if name_prefix in local_rename_dict:
                rename_dict[name] = local_rename_dict[name_prefix] + "." + names[-1]
            elif name.startswith("encoder.down_blocks"):
                block_type = {"resnets": "ResnetBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[3]]
                block_type_with_id = ".".join(names[:5])
                if block_type_with_id != last_block_type_with_id[block_type]:
                    block_id[block_type] += 1
                last_block_type_with_id[block_type] = block_type_with_id
                while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type:
                    block_id[block_type] += 1
                block_type_with_id = ".".join(names[:5])
                names = ["blocks", str(block_id[block_type])] + names[5:]
                rename_dict[name] = ".".join(names)

        # Convert state_dict
        state_dict_ = {}
        for name, param in state_dict.items():
            if name in rename_dict:
                state_dict_[rename_dict[name]] = param
        return state_dict_
    
    def from_civitai(self, state_dict):
        rename_dict = {
            "first_stage_model.encoder.conv_in.bias": "conv_in.bias",
            "first_stage_model.encoder.conv_in.weight": "conv_in.weight",
            "first_stage_model.encoder.conv_out.bias": "conv_out.bias",
            "first_stage_model.encoder.conv_out.weight": "conv_out.weight",
            "first_stage_model.encoder.down.0.block.0.conv1.bias": "blocks.0.conv1.bias",
            "first_stage_model.encoder.down.0.block.0.conv1.weight": "blocks.0.conv1.weight",
            "first_stage_model.encoder.down.0.block.0.conv2.bias": "blocks.0.conv2.bias",
            "first_stage_model.encoder.down.0.block.0.conv2.weight": "blocks.0.conv2.weight",
            "first_stage_model.encoder.down.0.block.0.norm1.bias": "blocks.0.norm1.bias",
            "first_stage_model.encoder.down.0.block.0.norm1.weight": "blocks.0.norm1.weight",
            "first_stage_model.encoder.down.0.block.0.norm2.bias": "blocks.0.norm2.bias",
            "first_stage_model.encoder.down.0.block.0.norm2.weight": "blocks.0.norm2.weight",
            "first_stage_model.encoder.down.0.block.1.conv1.bias": "blocks.1.conv1.bias",
            "first_stage_model.encoder.down.0.block.1.conv1.weight": "blocks.1.conv1.weight",
            "first_stage_model.encoder.down.0.block.1.conv2.bias": "blocks.1.conv2.bias",
            "first_stage_model.encoder.down.0.block.1.conv2.weight": "blocks.1.conv2.weight",
            "first_stage_model.encoder.down.0.block.1.norm1.bias": "blocks.1.norm1.bias",
            "first_stage_model.encoder.down.0.block.1.norm1.weight": "blocks.1.norm1.weight",
            "first_stage_model.encoder.down.0.block.1.norm2.bias": "blocks.1.norm2.bias",
            "first_stage_model.encoder.down.0.block.1.norm2.weight": "blocks.1.norm2.weight",
            "first_stage_model.encoder.down.0.downsample.conv.bias": "blocks.2.conv.bias",
            "first_stage_model.encoder.down.0.downsample.conv.weight": "blocks.2.conv.weight",
            "first_stage_model.encoder.down.1.block.0.conv1.bias": "blocks.3.conv1.bias",
            "first_stage_model.encoder.down.1.block.0.conv1.weight": "blocks.3.conv1.weight",
            "first_stage_model.encoder.down.1.block.0.conv2.bias": "blocks.3.conv2.bias",
            "first_stage_model.encoder.down.1.block.0.conv2.weight": "blocks.3.conv2.weight",
            "first_stage_model.encoder.down.1.block.0.nin_shortcut.bias": "blocks.3.conv_shortcut.bias",
            "first_stage_model.encoder.down.1.block.0.nin_shortcut.weight": "blocks.3.conv_shortcut.weight",
            "first_stage_model.encoder.down.1.block.0.norm1.bias": "blocks.3.norm1.bias",
            "first_stage_model.encoder.down.1.block.0.norm1.weight": "blocks.3.norm1.weight",
            "first_stage_model.encoder.down.1.block.0.norm2.bias": "blocks.3.norm2.bias",
            "first_stage_model.encoder.down.1.block.0.norm2.weight": "blocks.3.norm2.weight",
            "first_stage_model.encoder.down.1.block.1.conv1.bias": "blocks.4.conv1.bias",
            "first_stage_model.encoder.down.1.block.1.conv1.weight": "blocks.4.conv1.weight",
            "first_stage_model.encoder.down.1.block.1.conv2.bias": "blocks.4.conv2.bias",
            "first_stage_model.encoder.down.1.block.1.conv2.weight": "blocks.4.conv2.weight",
            "first_stage_model.encoder.down.1.block.1.norm1.bias": "blocks.4.norm1.bias",
            "first_stage_model.encoder.down.1.block.1.norm1.weight": "blocks.4.norm1.weight",
            "first_stage_model.encoder.down.1.block.1.norm2.bias": "blocks.4.norm2.bias",
            "first_stage_model.encoder.down.1.block.1.norm2.weight": "blocks.4.norm2.weight",
            "first_stage_model.encoder.down.1.downsample.conv.bias": "blocks.5.conv.bias",
            "first_stage_model.encoder.down.1.downsample.conv.weight": "blocks.5.conv.weight",
            "first_stage_model.encoder.down.2.block.0.conv1.bias": "blocks.6.conv1.bias",
            "first_stage_model.encoder.down.2.block.0.conv1.weight": "blocks.6.conv1.weight",
            "first_stage_model.encoder.down.2.block.0.conv2.bias": "blocks.6.conv2.bias",
            "first_stage_model.encoder.down.2.block.0.conv2.weight": "blocks.6.conv2.weight",
            "first_stage_model.encoder.down.2.block.0.nin_shortcut.bias": "blocks.6.conv_shortcut.bias",
            "first_stage_model.encoder.down.2.block.0.nin_shortcut.weight": "blocks.6.conv_shortcut.weight",
            "first_stage_model.encoder.down.2.block.0.norm1.bias": "blocks.6.norm1.bias",
            "first_stage_model.encoder.down.2.block.0.norm1.weight": "blocks.6.norm1.weight",
            "first_stage_model.encoder.down.2.block.0.norm2.bias": "blocks.6.norm2.bias",
            "first_stage_model.encoder.down.2.block.0.norm2.weight": "blocks.6.norm2.weight",
            "first_stage_model.encoder.down.2.block.1.conv1.bias": "blocks.7.conv1.bias",
            "first_stage_model.encoder.down.2.block.1.conv1.weight": "blocks.7.conv1.weight",
            "first_stage_model.encoder.down.2.block.1.conv2.bias": "blocks.7.conv2.bias",
            "first_stage_model.encoder.down.2.block.1.conv2.weight": "blocks.7.conv2.weight",
            "first_stage_model.encoder.down.2.block.1.norm1.bias": "blocks.7.norm1.bias",
            "first_stage_model.encoder.down.2.block.1.norm1.weight": "blocks.7.norm1.weight",
            "first_stage_model.encoder.down.2.block.1.norm2.bias": "blocks.7.norm2.bias",
            "first_stage_model.encoder.down.2.block.1.norm2.weight": "blocks.7.norm2.weight",
            "first_stage_model.encoder.down.2.downsample.conv.bias": "blocks.8.conv.bias",
            "first_stage_model.encoder.down.2.downsample.conv.weight": "blocks.8.conv.weight",
            "first_stage_model.encoder.down.3.block.0.conv1.bias": "blocks.9.conv1.bias",
            "first_stage_model.encoder.down.3.block.0.conv1.weight": "blocks.9.conv1.weight",
            "first_stage_model.encoder.down.3.block.0.conv2.bias": "blocks.9.conv2.bias",
            "first_stage_model.encoder.down.3.block.0.conv2.weight": "blocks.9.conv2.weight",
            "first_stage_model.encoder.down.3.block.0.norm1.bias": "blocks.9.norm1.bias",
            "first_stage_model.encoder.down.3.block.0.norm1.weight": "blocks.9.norm1.weight",
            "first_stage_model.encoder.down.3.block.0.norm2.bias": "blocks.9.norm2.bias",
            "first_stage_model.encoder.down.3.block.0.norm2.weight": "blocks.9.norm2.weight",
            "first_stage_model.encoder.down.3.block.1.conv1.bias": "blocks.10.conv1.bias",
            "first_stage_model.encoder.down.3.block.1.conv1.weight": "blocks.10.conv1.weight",
            "first_stage_model.encoder.down.3.block.1.conv2.bias": "blocks.10.conv2.bias",
            "first_stage_model.encoder.down.3.block.1.conv2.weight": "blocks.10.conv2.weight",
            "first_stage_model.encoder.down.3.block.1.norm1.bias": "blocks.10.norm1.bias",
            "first_stage_model.encoder.down.3.block.1.norm1.weight": "blocks.10.norm1.weight",
            "first_stage_model.encoder.down.3.block.1.norm2.bias": "blocks.10.norm2.bias",
            "first_stage_model.encoder.down.3.block.1.norm2.weight": "blocks.10.norm2.weight",
            "first_stage_model.encoder.mid.attn_1.k.bias": "blocks.12.transformer_blocks.0.to_k.bias",
            "first_stage_model.encoder.mid.attn_1.k.weight": "blocks.12.transformer_blocks.0.to_k.weight",
            "first_stage_model.encoder.mid.attn_1.norm.bias": "blocks.12.norm.bias",
            "first_stage_model.encoder.mid.attn_1.norm.weight": "blocks.12.norm.weight",
            "first_stage_model.encoder.mid.attn_1.proj_out.bias": "blocks.12.transformer_blocks.0.to_out.bias",       
            "first_stage_model.encoder.mid.attn_1.proj_out.weight": "blocks.12.transformer_blocks.0.to_out.weight",   
            "first_stage_model.encoder.mid.attn_1.q.bias": "blocks.12.transformer_blocks.0.to_q.bias",
            "first_stage_model.encoder.mid.attn_1.q.weight": "blocks.12.transformer_blocks.0.to_q.weight",
            "first_stage_model.encoder.mid.attn_1.v.bias": "blocks.12.transformer_blocks.0.to_v.bias",
            "first_stage_model.encoder.mid.attn_1.v.weight": "blocks.12.transformer_blocks.0.to_v.weight",
            "first_stage_model.encoder.mid.block_1.conv1.bias": "blocks.11.conv1.bias",
            "first_stage_model.encoder.mid.block_1.conv1.weight": "blocks.11.conv1.weight",
            "first_stage_model.encoder.mid.block_1.conv2.bias": "blocks.11.conv2.bias",
            "first_stage_model.encoder.mid.block_1.conv2.weight": "blocks.11.conv2.weight",
            "first_stage_model.encoder.mid.block_1.norm1.bias": "blocks.11.norm1.bias",
            "first_stage_model.encoder.mid.block_1.norm1.weight": "blocks.11.norm1.weight",
            "first_stage_model.encoder.mid.block_1.norm2.bias": "blocks.11.norm2.bias",
            "first_stage_model.encoder.mid.block_1.norm2.weight": "blocks.11.norm2.weight",
            "first_stage_model.encoder.mid.block_2.conv1.bias": "blocks.13.conv1.bias",
            "first_stage_model.encoder.mid.block_2.conv1.weight": "blocks.13.conv1.weight",
            "first_stage_model.encoder.mid.block_2.conv2.bias": "blocks.13.conv2.bias",
            "first_stage_model.encoder.mid.block_2.conv2.weight": "blocks.13.conv2.weight",
            "first_stage_model.encoder.mid.block_2.norm1.bias": "blocks.13.norm1.bias",
            "first_stage_model.encoder.mid.block_2.norm1.weight": "blocks.13.norm1.weight",
            "first_stage_model.encoder.mid.block_2.norm2.bias": "blocks.13.norm2.bias",
            "first_stage_model.encoder.mid.block_2.norm2.weight": "blocks.13.norm2.weight",
            "first_stage_model.encoder.norm_out.bias": "conv_norm_out.bias",
            "first_stage_model.encoder.norm_out.weight": "conv_norm_out.weight",
            "first_stage_model.quant_conv.bias": "quant_conv.bias",
            "first_stage_model.quant_conv.weight": "quant_conv.weight",
        }
        state_dict_ = {}
        for name in state_dict:
            if name in rename_dict:
                param = state_dict[name]
                if "transformer_blocks" in rename_dict[name]:
                    param = param.squeeze()
                state_dict_[rename_dict[name]] = param
        return state_dict_