File size: 5,854 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from ..models import ModelManager, FluxDiT, FluxTextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder
from ..prompters import FluxPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
import torch
from tqdm import tqdm



class FluxImagePipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = FlowMatchScheduler()
        self.prompter = FluxPrompter()
        # models
        self.text_encoder_1: FluxTextEncoder1 = None
        self.text_encoder_2: FluxTextEncoder2 = None
        self.dit: FluxDiT = None
        self.vae_decoder: FluxVAEDecoder = None
        self.vae_encoder: FluxVAEEncoder = None


    def denoising_model(self):
        return self.dit


    def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
        self.text_encoder_1 = model_manager.fetch_model("flux_text_encoder_1")
        self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2")
        self.dit = model_manager.fetch_model("flux_dit")
        self.vae_decoder = model_manager.fetch_model("flux_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("flux_vae_encoder")
        self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]):
        pipe = FluxImagePipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, prompt_refiner_classes)
        return pipe
    

    def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
        latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        image = self.vae_output_to_image(image)
        return image
    

    def encode_prompt(self, prompt, positive=True):
        prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt(
            prompt, device=self.device, positive=positive
        )
        return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids}
    

    def prepare_extra_input(self, latents=None, guidance=0.0):
        latent_image_ids = self.dit.prepare_image_ids(latents)
        guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype)
        return {"image_ids": latent_image_ids, "guidance": guidance}
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        local_prompts=[],
        masks=[],
        mask_scales=[],
        negative_prompt="",
        cfg_scale=1.0,
        embedded_guidance=0.0,
        input_image=None,
        denoising_strength=1.0,
        height=1024,
        width=1024,
        num_inference_steps=30,
        tiled=False,
        tile_size=128,
        tile_stride=64,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Tiler parameters
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if input_image is not None:
            image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
            latents = self.encode_image(image, **tiler_kwargs)
            noise = torch.randn((1, 16, height//8, width//8), device=self.device, dtype=self.torch_dtype)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = torch.randn((1, 16, height//8, width//8), device=self.device, dtype=self.torch_dtype)

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, positive=True)
        if cfg_scale != 1.0:
            prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
        prompt_emb_locals = [self.encode_prompt(prompt_local) for prompt_local in local_prompts]

        # Extra input
        extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance)

        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(self.device)

            # Classifier-free guidance
            inference_callback = lambda prompt_emb_posi: self.dit(
                latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input
            )
            noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback)
            if cfg_scale != 1.0:
                noise_pred_nega = self.dit(
                    latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input
                )
                noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
            else:
                noise_pred = noise_pred_posi

            # Iterate
            latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)

        return image