Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,451 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from .base_prompter import BasePrompter, tokenize_long_prompt
from ..models.model_manager import ModelManager
from ..models import SDXLTextEncoder, SDXLTextEncoder2
from transformers import CLIPTokenizer
import torch, os
class SDXLPrompter(BasePrompter):
def __init__(
self,
tokenizer_path=None,
tokenizer_2_path=None
):
if tokenizer_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer")
if tokenizer_2_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_xl/tokenizer_2")
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path)
self.text_encoder: SDXLTextEncoder = None
self.text_encoder_2: SDXLTextEncoder2 = None
def fetch_models(self, text_encoder: SDXLTextEncoder = None, text_encoder_2: SDXLTextEncoder2 = None):
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
def encode_prompt(
self,
prompt,
clip_skip=1,
clip_skip_2=2,
positive=True,
device="cuda"
):
prompt = self.process_prompt(prompt, positive=positive)
# 1
input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device)
prompt_emb_1 = self.text_encoder(input_ids, clip_skip=clip_skip)
# 2
input_ids_2 = tokenize_long_prompt(self.tokenizer_2, prompt).to(device)
add_text_embeds, prompt_emb_2 = self.text_encoder_2(input_ids_2, clip_skip=clip_skip_2)
# Merge
if prompt_emb_1.shape[0] != prompt_emb_2.shape[0]:
max_batch_size = min(prompt_emb_1.shape[0], prompt_emb_2.shape[0])
prompt_emb_1 = prompt_emb_1[: max_batch_size]
prompt_emb_2 = prompt_emb_2[: max_batch_size]
prompt_emb = torch.concatenate([prompt_emb_1, prompt_emb_2], dim=-1)
# For very long prompt, we only use the first 77 tokens to compute `add_text_embeds`.
add_text_embeds = add_text_embeds[0:1]
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1))
return add_text_embeds, prompt_emb
|