Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,452 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import torch
class ContinuousODEScheduler():
def __init__(self, num_inference_steps=100, sigma_max=700.0, sigma_min=0.002, rho=7.0):
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.rho = rho
self.set_timesteps(num_inference_steps)
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0):
ramp = torch.linspace(1-denoising_strength, 1, num_inference_steps)
min_inv_rho = torch.pow(torch.tensor((self.sigma_min,)), (1 / self.rho))
max_inv_rho = torch.pow(torch.tensor((self.sigma_max,)), (1 / self.rho))
self.sigmas = torch.pow(max_inv_rho + ramp * (min_inv_rho - max_inv_rho), self.rho)
self.timesteps = torch.log(self.sigmas) * 0.25
def step(self, model_output, timestep, sample, to_final=False):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
sample *= (sigma*sigma + 1).sqrt()
estimated_sample = -sigma / (sigma*sigma + 1).sqrt() * model_output + 1 / (sigma*sigma + 1) * sample
if to_final or timestep_id + 1 >= len(self.timesteps):
prev_sample = estimated_sample
else:
sigma_ = self.sigmas[timestep_id + 1]
derivative = 1 / sigma * (sample - estimated_sample)
prev_sample = sample + derivative * (sigma_ - sigma)
prev_sample /= (sigma_*sigma_ + 1).sqrt()
return prev_sample
def return_to_timestep(self, timestep, sample, sample_stablized):
# This scheduler doesn't support this function.
pass
def add_noise(self, original_samples, noise, timestep):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
sample = (original_samples + noise * sigma) / (sigma*sigma + 1).sqrt()
return sample
def training_target(self, sample, noise, timestep):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
target = (-(sigma*sigma + 1).sqrt() / sigma + 1 / (sigma*sigma + 1).sqrt() / sigma) * sample + 1 / (sigma*sigma + 1).sqrt() * noise
return target
def training_weight(self, timestep):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
weight = (1 + sigma*sigma).sqrt() / sigma
return weight
|