File size: 7,027 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from PIL import Image
import cupy as cp
import numpy as np
from tqdm import tqdm
from ..extensions.FastBlend.patch_match import PyramidPatchMatcher
from ..extensions.FastBlend.runners.fast import TableManager
from .base import VideoProcessor


class FastBlendSmoother(VideoProcessor):
    def __init__(
        self,
        inference_mode="fast", batch_size=8, window_size=60,
        minimum_patch_size=5, threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, initialize="identity", tracking_window_size=0
    ):
        self.inference_mode = inference_mode
        self.batch_size = batch_size
        self.window_size = window_size
        self.ebsynth_config = {
            "minimum_patch_size": minimum_patch_size,
            "threads_per_block": threads_per_block,
            "num_iter": num_iter,
            "gpu_id": gpu_id,
            "guide_weight": guide_weight,
            "initialize": initialize,
            "tracking_window_size": tracking_window_size
        }

    @staticmethod
    def from_model_manager(model_manager, **kwargs):
        # TODO: fetch GPU ID from model_manager
        return FastBlendSmoother(**kwargs)

    def inference_fast(self, frames_guide, frames_style):
        table_manager = TableManager()
        patch_match_engine = PyramidPatchMatcher(
            image_height=frames_style[0].shape[0],
            image_width=frames_style[0].shape[1],
            channel=3,
            **self.ebsynth_config
        )
        # left part
        table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, self.batch_size, desc="Fast Mode Step 1/4")
        table_l = table_manager.remapping_table_to_blending_table(table_l)
        table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 2/4")
        # right part
        table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, self.batch_size, desc="Fast Mode Step 3/4")
        table_r = table_manager.remapping_table_to_blending_table(table_r)
        table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 4/4")[::-1]
        # merge
        frames = []
        for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r):
            weight_m = -1
            weight = weight_l + weight_m + weight_r
            frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight)
            frames.append(frame)
        frames = [frame.clip(0, 255).astype("uint8") for frame in frames]
        frames = [Image.fromarray(frame) for frame in frames]
        return frames
    
    def inference_balanced(self, frames_guide, frames_style):
        patch_match_engine = PyramidPatchMatcher(
            image_height=frames_style[0].shape[0],
            image_width=frames_style[0].shape[1],
            channel=3,
            **self.ebsynth_config
        )
        output_frames = []
        # tasks
        n = len(frames_style)
        tasks = []
        for target in range(n):
            for source in range(target - self.window_size, target + self.window_size + 1):
                if source >= 0 and source < n and source != target:
                    tasks.append((source, target))
        # run
        frames = [(None, 1) for i in range(n)]
        for batch_id in tqdm(range(0, len(tasks), self.batch_size), desc="Balanced Mode"):
            tasks_batch = tasks[batch_id: min(batch_id+self.batch_size, len(tasks))]
            source_guide = np.stack([frames_guide[source] for source, target in tasks_batch])
            target_guide = np.stack([frames_guide[target] for source, target in tasks_batch])
            source_style = np.stack([frames_style[source] for source, target in tasks_batch])
            _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
            for (source, target), result in zip(tasks_batch, target_style):
                frame, weight = frames[target]
                if frame is None:
                    frame = frames_style[target]
                frames[target] = (
                    frame * (weight / (weight + 1)) + result / (weight + 1),
                    weight + 1
                )
                if weight + 1 == min(n, target + self.window_size + 1) - max(0, target - self.window_size):
                    frame = frame.clip(0, 255).astype("uint8")
                    output_frames.append(Image.fromarray(frame))
                    frames[target] = (None, 1)
        return output_frames
    
    def inference_accurate(self, frames_guide, frames_style):
        patch_match_engine = PyramidPatchMatcher(
            image_height=frames_style[0].shape[0],
            image_width=frames_style[0].shape[1],
            channel=3,
            use_mean_target_style=True,
            **self.ebsynth_config
        )
        output_frames = []
        # run
        n = len(frames_style)
        for target in tqdm(range(n), desc="Accurate Mode"):
            l, r = max(target - self.window_size, 0), min(target + self.window_size + 1, n)
            remapped_frames = []
            for i in range(l, r, self.batch_size):
                j = min(i + self.batch_size, r)
                source_guide = np.stack([frames_guide[source] for source in range(i, j)])
                target_guide = np.stack([frames_guide[target]] * (j - i))
                source_style = np.stack([frames_style[source] for source in range(i, j)])
                _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
                remapped_frames.append(target_style)
            frame = np.concatenate(remapped_frames, axis=0).mean(axis=0)
            frame = frame.clip(0, 255).astype("uint8")
            output_frames.append(Image.fromarray(frame))
        return output_frames
    
    def release_vram(self):
        mempool = cp.get_default_memory_pool()
        pinned_mempool = cp.get_default_pinned_memory_pool()
        mempool.free_all_blocks()
        pinned_mempool.free_all_blocks()
    
    def __call__(self, rendered_frames, original_frames=None, **kwargs):
        rendered_frames = [np.array(frame) for frame in rendered_frames]
        original_frames = [np.array(frame) for frame in original_frames]
        if self.inference_mode == "fast":
            output_frames = self.inference_fast(original_frames, rendered_frames)
        elif self.inference_mode == "balanced":
            output_frames = self.inference_balanced(original_frames, rendered_frames)
        elif self.inference_mode == "accurate":
            output_frames = self.inference_accurate(original_frames, rendered_frames)
        else:
            raise ValueError("inference_mode must be fast, balanced or accurate")
        self.release_vram()
        return output_frames