File size: 25,257 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import torch
from .sd3_dit import TimestepEmbeddings, AdaLayerNorm
from einops import rearrange
from .tiler import TileWorker



class RoPEEmbedding(torch.nn.Module):
    def __init__(self, dim, theta, axes_dim):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim


    def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
        assert dim % 2 == 0, "The dimension must be even."

        scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
        omega = 1.0 / (theta**scale)

        batch_size, seq_length = pos.shape
        out = torch.einsum("...n,d->...nd", pos, omega)
        cos_out = torch.cos(out)
        sin_out = torch.sin(out)

        stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
        out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
        return out.float()


    def forward(self, ids):
        n_axes = ids.shape[-1]
        emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3)
        return emb.unsqueeze(1)
    


class RMSNorm(torch.nn.Module):
    def __init__(self, dim, eps):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones((dim,)))
        self.eps = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
        hidden_states = hidden_states.to(input_dtype) * self.weight
        return hidden_states
    


class FluxJointAttention(torch.nn.Module):
    def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.only_out_a = only_out_a

        self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
        self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3)

        self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_q_b = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_b = RMSNorm(head_dim, eps=1e-6)

        self.a_to_out = torch.nn.Linear(dim_a, dim_a)
        if not only_out_a:
            self.b_to_out = torch.nn.Linear(dim_b, dim_b)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


    def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb):
        batch_size = hidden_states_a.shape[0]

        # Part A
        qkv_a = self.a_to_qkv(hidden_states_a)
        qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_a, k_a, v_a = qkv_a.chunk(3, dim=1)
        q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)

        # Part B
        qkv_b = self.b_to_qkv(hidden_states_b)
        qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_b, k_b, v_b = qkv_b.chunk(3, dim=1)
        q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b)

        q = torch.concat([q_b, q_a], dim=2)
        k = torch.concat([k_b, k_a], dim=2)
        v = torch.concat([v_b, v_a], dim=2)

        q, k = self.apply_rope(q, k, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:]
        hidden_states_a = self.a_to_out(hidden_states_a)
        if self.only_out_a:
            return hidden_states_a
        else:
            hidden_states_b = self.b_to_out(hidden_states_b)
            return hidden_states_a, hidden_states_b
    


class FluxJointTransformerBlock(torch.nn.Module):
    def __init__(self, dim, num_attention_heads):
        super().__init__()
        self.norm1_a = AdaLayerNorm(dim)
        self.norm1_b = AdaLayerNorm(dim)

        self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads)

        self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_a = torch.nn.Sequential(
            torch.nn.Linear(dim, dim*4),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(dim*4, dim)
        )

        self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_b = torch.nn.Sequential(
            torch.nn.Linear(dim, dim*4),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(dim*4, dim)
        )


    def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb):
        norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
        norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb)

        # Attention
        attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb)

        # Part A
        hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
        norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
        hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)

        # Part B
        hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b
        norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b
        hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b)

        return hidden_states_a, hidden_states_b
    


class FluxSingleAttention(torch.nn.Module):
    def __init__(self, dim_a, dim_b, num_heads, head_dim):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim

        self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)

        self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(head_dim, eps=1e-6)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


    def forward(self, hidden_states, image_rotary_emb):
        batch_size = hidden_states.shape[0]

        qkv_a = self.a_to_qkv(hidden_states)
        qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_a, k_a, v = qkv_a.chunk(3, dim=1)
        q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)

        q, k = self.apply_rope(q_a, k_a, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        return hidden_states
    


class AdaLayerNormSingle(torch.nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = torch.nn.SiLU()
        self.linear = torch.nn.Linear(dim, 3 * dim, bias=True)
        self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)


    def forward(self, x, emb):
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa
    


class FluxSingleTransformerBlock(torch.nn.Module):
    def __init__(self, dim, num_attention_heads):
        super().__init__()
        self.num_heads = num_attention_heads
        self.head_dim = dim // num_attention_heads
        self.dim = dim

        self.norm = AdaLayerNormSingle(dim)
        # self.proj_in = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), torch.nn.GELU(approximate="tanh"))
        # self.attn = FluxSingleAttention(dim, dim, num_attention_heads, dim // num_attention_heads)
        self.linear = torch.nn.Linear(dim, dim * (3 + 4))
        self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6)

        self.proj_out = torch.nn.Linear(dim * 5, dim)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

    
    def process_attention(self, hidden_states, image_rotary_emb):
        batch_size = hidden_states.shape[0]

        qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q, k, v = qkv.chunk(3, dim=1)
        q, k = self.norm_q_a(q), self.norm_k_a(k)

        q, k = self.apply_rope(q, k, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        return hidden_states


    def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb):
        residual = hidden_states_a
        norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb)
        hidden_states_a = self.linear(norm_hidden_states)
        attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:]

        attn_output = self.process_attention(attn_output, image_rotary_emb)
        mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh")

        hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2)
        hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a)
        hidden_states_a = residual + hidden_states_a
        
        return hidden_states_a, hidden_states_b
    


class AdaLayerNormContinuous(torch.nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = torch.nn.SiLU()
        self.linear = torch.nn.Linear(dim, dim * 2, bias=True)
        self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)

    def forward(self, x, conditioning):
        emb = self.linear(self.silu(conditioning))
        scale, shift = torch.chunk(emb, 2, dim=1)
        x = self.norm(x) * (1 + scale)[:, None] + shift[:, None]
        return x



class FluxDiT(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56])
        self.time_embedder = TimestepEmbeddings(256, 3072)
        self.guidance_embedder = TimestepEmbeddings(256, 3072)
        self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072))
        self.context_embedder = torch.nn.Linear(4096, 3072)
        self.x_embedder = torch.nn.Linear(64, 3072)

        self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)])
        self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)])

        self.norm_out = AdaLayerNormContinuous(3072)
        self.proj_out = torch.nn.Linear(3072, 64)


    def patchify(self, hidden_states):
        hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2)
        return hidden_states


    def unpatchify(self, hidden_states, height, width):
        hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
        return hidden_states
    

    def prepare_image_ids(self, latents):
        batch_size, _, height, width = latents.shape
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
        latent_image_ids = latent_image_ids.reshape(
            batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )
        latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype)

        return latent_image_ids
    

    def tiled_forward(
        self,
        hidden_states,
        timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
        tile_size=128, tile_stride=64,
        **kwargs
    ):
        # Due to the global positional embedding, we cannot implement layer-wise tiled forward.
        hidden_states = TileWorker().tiled_forward(
            lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None),
            hidden_states,
            tile_size,
            tile_stride,
            tile_device=hidden_states.device,
            tile_dtype=hidden_states.dtype
        )
        return hidden_states


    def forward(
        self,
        hidden_states,
        timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None,
        tiled=False, tile_size=128, tile_stride=64,
        **kwargs
    ):
        if tiled:
            return self.tiled_forward(
                hidden_states,
                timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
                tile_size=tile_size, tile_stride=tile_stride,
                **kwargs
            )
        
        if image_ids is None:
            image_ids = self.prepare_image_ids(hidden_states)
        
        conditioning = self.time_embedder(timestep, hidden_states.dtype)\
                     + self.guidance_embedder(guidance, hidden_states.dtype)\
                     + self.pooled_text_embedder(pooled_prompt_emb)
        prompt_emb = self.context_embedder(prompt_emb)
        image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))

        height, width = hidden_states.shape[-2:]
        hidden_states = self.patchify(hidden_states)
        hidden_states = self.x_embedder(hidden_states)
        
        for block in self.blocks:
            hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb)

        hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
        for block in self.single_blocks:
            hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb)
        hidden_states = hidden_states[:, prompt_emb.shape[1]:]

        hidden_states = self.norm_out(hidden_states, conditioning)
        hidden_states = self.proj_out(hidden_states)
        hidden_states = self.unpatchify(hidden_states, height, width)

        return hidden_states


    @staticmethod
    def state_dict_converter():
        return FluxDiTStateDictConverter()
    


class FluxDiTStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        rename_dict = {
            "context_embedder": "context_embedder",
            "x_embedder": "x_embedder",
            "time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0",
            "time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2",
            "time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0",
            "time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2",
            "time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0",
            "time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2",
            "norm_out.linear": "norm_out.linear",
            "proj_out": "proj_out",

            "norm1.linear": "norm1_a.linear",
            "norm1_context.linear": "norm1_b.linear",
            "attn.to_q": "attn.a_to_q",
            "attn.to_k": "attn.a_to_k",
            "attn.to_v": "attn.a_to_v",
            "attn.to_out.0": "attn.a_to_out",
            "attn.add_q_proj": "attn.b_to_q",
            "attn.add_k_proj": "attn.b_to_k",
            "attn.add_v_proj": "attn.b_to_v",
            "attn.to_add_out": "attn.b_to_out",
            "ff.net.0.proj": "ff_a.0",
            "ff.net.2": "ff_a.2",
            "ff_context.net.0.proj": "ff_b.0",
            "ff_context.net.2": "ff_b.2",
            "attn.norm_q": "attn.norm_q_a",
            "attn.norm_k": "attn.norm_k_a",
            "attn.norm_added_q": "attn.norm_q_b",
            "attn.norm_added_k": "attn.norm_k_b",
        }
        rename_dict_single = {
            "attn.to_q": "a_to_q",
            "attn.to_k": "a_to_k",
            "attn.to_v": "a_to_v",
            "attn.norm_q": "norm_q_a",
            "attn.norm_k": "norm_k_a",
            "norm.linear": "norm.linear",
            "proj_mlp": "proj_in_besides_attn",
            "proj_out": "proj_out",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            if name in rename_dict:
                state_dict_[rename_dict[name]] = param
            elif name.endswith(".weight") or name.endswith(".bias"):
                suffix = ".weight" if name.endswith(".weight") else ".bias"
                prefix = name[:-len(suffix)]
                if prefix in rename_dict:
                    state_dict_[rename_dict[prefix] + suffix] = param
                elif prefix.startswith("transformer_blocks."):
                    names = prefix.split(".")
                    names[0] = "blocks"
                    middle = ".".join(names[2:])
                    if middle in rename_dict:
                        name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]])
                        state_dict_[name_] = param
                elif prefix.startswith("single_transformer_blocks."):
                    names = prefix.split(".")
                    names[0] = "single_blocks"
                    middle = ".".join(names[2:])
                    if middle in rename_dict_single:
                        name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]])
                        state_dict_[name_] = param
                    else:
                        print(name)
                else:
                    print(name)
        for name in list(state_dict_.keys()):
            if ".proj_in_besides_attn." in name:
                name_ = name.replace(".proj_in_besides_attn.", ".linear.")
                param = torch.concat([
                    state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_q.")],
                    state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_k.")],
                    state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_v.")],
                    state_dict_[name],
                ], dim=0)
                state_dict_[name_] = param
                state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_q."))
                state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_k."))
                state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_v."))
                state_dict_.pop(name)
        for name in list(state_dict_.keys()):
            for component in ["a", "b"]:
                if f".{component}_to_q." in name:
                    name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.")
                    param = torch.concat([
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
                    ], dim=0)
                    state_dict_[name_] = param
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q."))
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k."))
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v."))
        return state_dict_
    
    def from_civitai(self, state_dict):
        rename_dict = {
            "time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias",
            "time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight",
            "time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias",
            "time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight",
            "txt_in.bias": "context_embedder.bias",
            "txt_in.weight": "context_embedder.weight",
            "vector_in.in_layer.bias": "pooled_text_embedder.0.bias",
            "vector_in.in_layer.weight": "pooled_text_embedder.0.weight",
            "vector_in.out_layer.bias": "pooled_text_embedder.2.bias",
            "vector_in.out_layer.weight": "pooled_text_embedder.2.weight",
            "final_layer.linear.bias": "proj_out.bias",
            "final_layer.linear.weight": "proj_out.weight",
            "guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias",
            "guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight",
            "guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias",
            "guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight",
            "img_in.bias": "x_embedder.bias",
            "img_in.weight": "x_embedder.weight",
            "final_layer.adaLN_modulation.1.weight": "norm_out.linear.weight",
            "final_layer.adaLN_modulation.1.bias": "norm_out.linear.bias",
        }
        suffix_rename_dict = {
            "img_attn.norm.key_norm.scale": "attn.norm_k_a.weight",
            "img_attn.norm.query_norm.scale": "attn.norm_q_a.weight",
            "img_attn.proj.bias": "attn.a_to_out.bias",
            "img_attn.proj.weight": "attn.a_to_out.weight",
            "img_attn.qkv.bias": "attn.a_to_qkv.bias",
            "img_attn.qkv.weight": "attn.a_to_qkv.weight",
            "img_mlp.0.bias": "ff_a.0.bias",
            "img_mlp.0.weight": "ff_a.0.weight",
            "img_mlp.2.bias": "ff_a.2.bias",
            "img_mlp.2.weight": "ff_a.2.weight",
            "img_mod.lin.bias": "norm1_a.linear.bias",
            "img_mod.lin.weight": "norm1_a.linear.weight",
            "txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight",
            "txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight",
            "txt_attn.proj.bias": "attn.b_to_out.bias",
            "txt_attn.proj.weight": "attn.b_to_out.weight",
            "txt_attn.qkv.bias": "attn.b_to_qkv.bias",
            "txt_attn.qkv.weight": "attn.b_to_qkv.weight",
            "txt_mlp.0.bias": "ff_b.0.bias",
            "txt_mlp.0.weight": "ff_b.0.weight",
            "txt_mlp.2.bias": "ff_b.2.bias",
            "txt_mlp.2.weight": "ff_b.2.weight",
            "txt_mod.lin.bias": "norm1_b.linear.bias",
            "txt_mod.lin.weight": "norm1_b.linear.weight",

            "linear1.bias": "linear.bias",
            "linear1.weight": "linear.weight",
            "linear2.bias": "proj_out.bias",
            "linear2.weight": "proj_out.weight",
            "modulation.lin.bias": "norm.linear.bias",
            "modulation.lin.weight": "norm.linear.weight",
            "norm.key_norm.scale": "norm_k_a.weight",
            "norm.query_norm.scale": "norm_q_a.weight",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            names = name.split(".")
            if name in rename_dict:
                rename = rename_dict[name]
                if name.startswith("final_layer.adaLN_modulation.1."):
                    param = torch.concat([param[3072:], param[:3072]], dim=0)
                state_dict_[rename] = param
            elif names[0] == "double_blocks":
                rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
                state_dict_[rename] = param
            elif names[0] == "single_blocks":
                if ".".join(names[2:]) in suffix_rename_dict:
                    rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
                    state_dict_[rename] = param
            else:
                print(name)
        return state_dict_