Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,172 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from .attention import Attention
from einops import repeat, rearrange
import math
import torch
class HunyuanDiTRotaryEmbedding(torch.nn.Module):
def __init__(self, q_norm_shape=88, k_norm_shape=88, rotary_emb_on_k=True):
super().__init__()
self.q_norm = torch.nn.LayerNorm((q_norm_shape,), elementwise_affine=True, eps=1e-06)
self.k_norm = torch.nn.LayerNorm((k_norm_shape,), elementwise_affine=True, eps=1e-06)
self.rotary_emb_on_k = rotary_emb_on_k
self.k_cache, self.v_cache = [], []
def reshape_for_broadcast(self, freqs_cis, x):
ndim = x.ndim
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
def rotate_half(self, x):
x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(self, xq, xk, freqs_cis):
xk_out = None
cos, sin = self.reshape_for_broadcast(freqs_cis, xq)
cos, sin = cos.to(xq.device), sin.to(xq.device)
xq_out = (xq.float() * cos + self.rotate_half(xq.float()) * sin).type_as(xq)
if xk is not None:
xk_out = (xk.float() * cos + self.rotate_half(xk.float()) * sin).type_as(xk)
return xq_out, xk_out
def forward(self, q, k, v, freqs_cis_img, to_cache=False):
# norm
q = self.q_norm(q)
k = self.k_norm(k)
# RoPE
if self.rotary_emb_on_k:
q, k = self.apply_rotary_emb(q, k, freqs_cis_img)
else:
q, _ = self.apply_rotary_emb(q, None, freqs_cis_img)
if to_cache:
self.k_cache.append(k)
self.v_cache.append(v)
elif len(self.k_cache) > 0 and len(self.v_cache) > 0:
k = torch.concat([k] + self.k_cache, dim=2)
v = torch.concat([v] + self.v_cache, dim=2)
self.k_cache, self.v_cache = [], []
return q, k, v
class FP32_Layernorm(torch.nn.LayerNorm):
def forward(self, inputs):
origin_dtype = inputs.dtype
return torch.nn.functional.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).to(origin_dtype)
class FP32_SiLU(torch.nn.SiLU):
def forward(self, inputs):
origin_dtype = inputs.dtype
return torch.nn.functional.silu(inputs.float(), inplace=False).to(origin_dtype)
class HunyuanDiTFinalLayer(torch.nn.Module):
def __init__(self, final_hidden_size=1408, condition_dim=1408, patch_size=2, out_channels=8):
super().__init__()
self.norm_final = torch.nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = torch.nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = torch.nn.Sequential(
FP32_SiLU(),
torch.nn.Linear(condition_dim, 2 * final_hidden_size, bias=True)
)
def modulate(self, x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def forward(self, hidden_states, condition_emb):
shift, scale = self.adaLN_modulation(condition_emb).chunk(2, dim=1)
hidden_states = self.modulate(self.norm_final(hidden_states), shift, scale)
hidden_states = self.linear(hidden_states)
return hidden_states
class HunyuanDiTBlock(torch.nn.Module):
def __init__(
self,
hidden_dim=1408,
condition_dim=1408,
num_heads=16,
mlp_ratio=4.3637,
text_dim=1024,
skip_connection=False
):
super().__init__()
self.norm1 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.rota1 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads)
self.attn1 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, bias_q=True, bias_kv=True, bias_out=True)
self.norm2 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.rota2 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads, rotary_emb_on_k=False)
self.attn2 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, kv_dim=text_dim, bias_q=True, bias_kv=True, bias_out=True)
self.norm3 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.modulation = torch.nn.Sequential(FP32_SiLU(), torch.nn.Linear(condition_dim, hidden_dim, bias=True))
self.mlp = torch.nn.Sequential(
torch.nn.Linear(hidden_dim, int(hidden_dim*mlp_ratio), bias=True),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(int(hidden_dim*mlp_ratio), hidden_dim, bias=True)
)
if skip_connection:
self.skip_norm = FP32_Layernorm((hidden_dim * 2,), eps=1e-6, elementwise_affine=True)
self.skip_linear = torch.nn.Linear(hidden_dim * 2, hidden_dim, bias=True)
else:
self.skip_norm, self.skip_linear = None, None
def forward(self, hidden_states, condition_emb, text_emb, freq_cis_img, residual=None, to_cache=False):
# Long Skip Connection
if self.skip_norm is not None and self.skip_linear is not None:
hidden_states = torch.cat([hidden_states, residual], dim=-1)
hidden_states = self.skip_norm(hidden_states)
hidden_states = self.skip_linear(hidden_states)
# Self-Attention
shift_msa = self.modulation(condition_emb).unsqueeze(dim=1)
attn_input = self.norm1(hidden_states) + shift_msa
hidden_states = hidden_states + self.attn1(attn_input, qkv_preprocessor=lambda q, k, v: self.rota1(q, k, v, freq_cis_img, to_cache=to_cache))
# Cross-Attention
attn_input = self.norm3(hidden_states)
hidden_states = hidden_states + self.attn2(attn_input, text_emb, qkv_preprocessor=lambda q, k, v: self.rota2(q, k, v, freq_cis_img))
# FFN Layer
mlp_input = self.norm2(hidden_states)
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class AttentionPool(torch.nn.Module):
def __init__(self, spacial_dim, embed_dim, num_heads, output_dim = None):
super().__init__()
self.positional_embedding = torch.nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = torch.nn.Linear(embed_dim, embed_dim)
self.q_proj = torch.nn.Linear(embed_dim, embed_dim)
self.v_proj = torch.nn.Linear(embed_dim, embed_dim)
self.c_proj = torch.nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.permute(1, 0, 2) # NLC -> LNC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = torch.nn.functional.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
class PatchEmbed(torch.nn.Module):
def __init__(
self,
patch_size=(2, 2),
in_chans=4,
embed_dim=1408,
bias=True,
):
super().__init__()
self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
return x
def timestep_embedding(t, dim, max_period=10000, repeat_only=False):
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device) # size: [dim/2], 一个指数衰减的曲线
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
else:
embedding = repeat(t, "b -> b d", d=dim)
return embedding
class TimestepEmbedder(torch.nn.Module):
def __init__(self, hidden_size=1408, frequency_embedding_size=256):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(frequency_embedding_size, hidden_size, bias=True),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype)
t_emb = self.mlp(t_freq)
return t_emb
class HunyuanDiT(torch.nn.Module):
def __init__(self, num_layers_down=21, num_layers_up=19, in_channels=4, out_channels=8, hidden_dim=1408, text_dim=1024, t5_dim=2048, text_length=77, t5_length=256):
super().__init__()
# Embedders
self.text_emb_padding = torch.nn.Parameter(torch.randn(text_length + t5_length, text_dim, dtype=torch.float32))
self.t5_embedder = torch.nn.Sequential(
torch.nn.Linear(t5_dim, t5_dim * 4, bias=True),
FP32_SiLU(),
torch.nn.Linear(t5_dim * 4, text_dim, bias=True),
)
self.t5_pooler = AttentionPool(t5_length, t5_dim, num_heads=8, output_dim=1024)
self.style_embedder = torch.nn.Parameter(torch.randn(hidden_dim))
self.patch_embedder = PatchEmbed(in_chans=in_channels)
self.timestep_embedder = TimestepEmbedder()
self.extra_embedder = torch.nn.Sequential(
torch.nn.Linear(256 * 6 + 1024 + hidden_dim, hidden_dim * 4),
FP32_SiLU(),
torch.nn.Linear(hidden_dim * 4, hidden_dim),
)
# Transformer blocks
self.num_layers_down = num_layers_down
self.num_layers_up = num_layers_up
self.blocks = torch.nn.ModuleList(
[HunyuanDiTBlock(skip_connection=False) for _ in range(num_layers_down)] + \
[HunyuanDiTBlock(skip_connection=True) for _ in range(num_layers_up)]
)
# Output layers
self.final_layer = HunyuanDiTFinalLayer()
self.out_channels = out_channels
def prepare_text_emb(self, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5):
text_emb_mask = text_emb_mask.bool()
text_emb_mask_t5 = text_emb_mask_t5.bool()
text_emb_t5 = self.t5_embedder(text_emb_t5)
text_emb = torch.cat([text_emb, text_emb_t5], dim=1)
text_emb_mask = torch.cat([text_emb_mask, text_emb_mask_t5], dim=-1)
text_emb = torch.where(text_emb_mask.unsqueeze(2), text_emb, self.text_emb_padding.to(text_emb))
return text_emb
def prepare_extra_emb(self, text_emb_t5, timestep, size_emb, dtype, batch_size):
# Text embedding
pooled_text_emb_t5 = self.t5_pooler(text_emb_t5)
# Timestep embedding
timestep_emb = self.timestep_embedder(timestep)
# Size embedding
size_emb = timestep_embedding(size_emb.view(-1), 256).to(dtype)
size_emb = size_emb.view(-1, 6 * 256)
# Style embedding
style_emb = repeat(self.style_embedder, "D -> B D", B=batch_size)
# Concatenate all extra vectors
extra_emb = torch.cat([pooled_text_emb_t5, size_emb, style_emb], dim=1)
condition_emb = timestep_emb + self.extra_embedder(extra_emb)
return condition_emb
def unpatchify(self, x, h, w):
return rearrange(x, "B (H W) (P Q C) -> B C (H P) (W Q)", H=h, W=w, P=2, Q=2)
def build_mask(self, data, is_bound):
_, _, H, W = data.shape
h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
border_width = (H + W) // 4
pad = torch.ones_like(h) * border_width
mask = torch.stack([
pad if is_bound[0] else h + 1,
pad if is_bound[1] else H - h,
pad if is_bound[2] else w + 1,
pad if is_bound[3] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
mask = rearrange(mask, "H W -> 1 H W")
return mask
def tiled_block_forward(self, block, hidden_states, condition_emb, text_emb, freq_cis_img, residual, torch_dtype, data_device, computation_device, tile_size, tile_stride):
B, C, H, W = hidden_states.shape
weight = torch.zeros((1, 1, H, W), dtype=torch_dtype, device=data_device)
values = torch.zeros((B, C, H, W), dtype=torch_dtype, device=data_device)
# Split tasks
tasks = []
for h in range(0, H, tile_stride):
for w in range(0, W, tile_stride):
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
continue
h_, w_ = h + tile_size, w + tile_size
if h_ > H: h, h_ = H - tile_size, H
if w_ > W: w, w_ = W - tile_size, W
tasks.append((h, h_, w, w_))
# Run
for hl, hr, wl, wr in tasks:
hidden_states_batch = hidden_states[:, :, hl:hr, wl:wr].to(computation_device)
hidden_states_batch = rearrange(hidden_states_batch, "B C H W -> B (H W) C")
if residual is not None:
residual_batch = residual[:, :, hl:hr, wl:wr].to(computation_device)
residual_batch = rearrange(residual_batch, "B C H W -> B (H W) C")
else:
residual_batch = None
# Forward
hidden_states_batch = block(hidden_states_batch, condition_emb, text_emb, freq_cis_img, residual_batch).to(data_device)
hidden_states_batch = rearrange(hidden_states_batch, "B (H W) C -> B C H W", H=hr-hl)
mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W))
values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
weight[:, :, hl:hr, wl:wr] += mask
values /= weight
return values
def forward(
self, hidden_states, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5, timestep, size_emb, freq_cis_img,
tiled=False, tile_size=64, tile_stride=32,
to_cache=False,
use_gradient_checkpointing=False,
):
# Embeddings
text_emb = self.prepare_text_emb(text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5)
condition_emb = self.prepare_extra_emb(text_emb_t5, timestep, size_emb, hidden_states.dtype, hidden_states.shape[0])
# Input
height, width = hidden_states.shape[-2], hidden_states.shape[-1]
hidden_states = self.patch_embedder(hidden_states)
# Blocks
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if tiled:
hidden_states = rearrange(hidden_states, "B (H W) C -> B C H W", H=height//2)
residuals = []
for block_id, block in enumerate(self.blocks):
residual = residuals.pop() if block_id >= self.num_layers_down else None
hidden_states = self.tiled_block_forward(
block, hidden_states, condition_emb, text_emb, freq_cis_img, residual,
torch_dtype=hidden_states.dtype, data_device=hidden_states.device, computation_device=hidden_states.device,
tile_size=tile_size, tile_stride=tile_stride
)
if block_id < self.num_layers_down - 2:
residuals.append(hidden_states)
hidden_states = rearrange(hidden_states, "B C H W -> B (H W) C")
else:
residuals = []
for block_id, block in enumerate(self.blocks):
residual = residuals.pop() if block_id >= self.num_layers_down else None
if self.training and use_gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, condition_emb, text_emb, freq_cis_img, residual,
use_reentrant=False,
)
else:
hidden_states = block(hidden_states, condition_emb, text_emb, freq_cis_img, residual, to_cache=to_cache)
if block_id < self.num_layers_down - 2:
residuals.append(hidden_states)
# Output
hidden_states = self.final_layer(hidden_states, condition_emb)
hidden_states = self.unpatchify(hidden_states, height//2, width//2)
hidden_states, _ = hidden_states.chunk(2, dim=1)
return hidden_states
@staticmethod
def state_dict_converter():
return HunyuanDiTStateDictConverter()
class HunyuanDiTStateDictConverter():
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {}
for name, param in state_dict.items():
name_ = name
name_ = name_.replace(".default_modulation.", ".modulation.")
name_ = name_.replace(".mlp.fc1.", ".mlp.0.")
name_ = name_.replace(".mlp.fc2.", ".mlp.2.")
name_ = name_.replace(".attn1.q_norm.", ".rota1.q_norm.")
name_ = name_.replace(".attn2.q_norm.", ".rota2.q_norm.")
name_ = name_.replace(".attn1.k_norm.", ".rota1.k_norm.")
name_ = name_.replace(".attn2.k_norm.", ".rota2.k_norm.")
name_ = name_.replace(".q_proj.", ".to_q.")
name_ = name_.replace(".out_proj.", ".to_out.")
name_ = name_.replace("text_embedding_padding", "text_emb_padding")
name_ = name_.replace("mlp_t5.0.", "t5_embedder.0.")
name_ = name_.replace("mlp_t5.2.", "t5_embedder.2.")
name_ = name_.replace("pooler.", "t5_pooler.")
name_ = name_.replace("x_embedder.", "patch_embedder.")
name_ = name_.replace("t_embedder.", "timestep_embedder.")
name_ = name_.replace("t5_pooler.to_q.", "t5_pooler.q_proj.")
name_ = name_.replace("style_embedder.weight", "style_embedder")
if ".kv_proj." in name_:
param_k = param[:param.shape[0]//2]
param_v = param[param.shape[0]//2:]
state_dict_[name_.replace(".kv_proj.", ".to_k.")] = param_k
state_dict_[name_.replace(".kv_proj.", ".to_v.")] = param_v
elif ".Wqkv." in name_:
param_q = param[:param.shape[0]//3]
param_k = param[param.shape[0]//3:param.shape[0]//3*2]
param_v = param[param.shape[0]//3*2:]
state_dict_[name_.replace(".Wqkv.", ".to_q.")] = param_q
state_dict_[name_.replace(".Wqkv.", ".to_k.")] = param_k
state_dict_[name_.replace(".Wqkv.", ".to_v.")] = param_v
elif "style_embedder" in name_:
state_dict_[name_] = param.squeeze()
else:
state_dict_[name_] = param
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)
|