Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,037 Bytes
703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import torch
from ..models import SDUNet, SDMotionModel, SDXLUNet, SDXLMotionModel
from ..models.sd_unet import PushBlock, PopBlock
from ..controlnets import MultiControlNetManager
def lets_dance(
unet: SDUNet,
motion_modules: SDMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
timestep = None,
encoder_hidden_states = None,
ipadapter_kwargs_list = {},
controlnet_frames = None,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
tiled=False,
tile_size=64,
tile_stride=32,
device = "cuda",
vram_limit_level = 0,
):
# 0. Text embedding alignment (only for video processing)
if encoder_hidden_states.shape[0] != sample.shape[0]:
encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0], 1, 1, 1)
# 1. ControlNet
# This part will be repeated on overlapping frames if animatediff_batch_size > animatediff_stride.
# I leave it here because I intend to do something interesting on the ControlNets.
controlnet_insert_block_id = 30
if controlnet is not None and controlnet_frames is not None:
res_stacks = []
# process controlnet frames with batch
for batch_id in range(0, sample.shape[0], controlnet_batch_size):
batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0])
res_stack = controlnet(
sample[batch_id: batch_id_],
timestep,
encoder_hidden_states[batch_id: batch_id_],
controlnet_frames[:, batch_id: batch_id_],
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
)
if vram_limit_level >= 1:
res_stack = [res.cpu() for res in res_stack]
res_stacks.append(res_stack)
# concat the residual
additional_res_stack = []
for i in range(len(res_stacks[0])):
res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0)
additional_res_stack.append(res)
else:
additional_res_stack = None
# 2. time
time_emb = unet.time_proj(timestep).to(sample.dtype)
time_emb = unet.time_embedding(time_emb)
# 3. pre-process
height, width = sample.shape[2], sample.shape[3]
hidden_states = unet.conv_in(sample)
text_emb = encoder_hidden_states
res_stack = [hidden_states.cpu() if vram_limit_level>=1 else hidden_states]
# 4. blocks
for block_id, block in enumerate(unet.blocks):
# 4.1 UNet
if isinstance(block, PushBlock):
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].cpu()
elif isinstance(block, PopBlock):
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].to(device)
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
else:
hidden_states_input = hidden_states
hidden_states_output = []
for batch_id in range(0, sample.shape[0], unet_batch_size):
batch_id_ = min(batch_id + unet_batch_size, sample.shape[0])
hidden_states, _, _, _ = block(
hidden_states_input[batch_id: batch_id_],
time_emb,
text_emb[batch_id: batch_id_],
res_stack,
cross_frame_attention=cross_frame_attention,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}),
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
)
hidden_states_output.append(hidden_states)
hidden_states = torch.concat(hidden_states_output, dim=0)
# 4.2 AnimateDiff
if motion_modules is not None:
if block_id in motion_modules.call_block_id:
motion_module_id = motion_modules.call_block_id[block_id]
hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
hidden_states, time_emb, text_emb, res_stack,
batch_size=1
)
# 4.3 ControlNet
if block_id == controlnet_insert_block_id and additional_res_stack is not None:
hidden_states += additional_res_stack.pop().to(device)
if vram_limit_level>=1:
res_stack = [(res.to(device) + additional_res.to(device)).cpu() for res, additional_res in zip(res_stack, additional_res_stack)]
else:
res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)]
# 5. output
hidden_states = unet.conv_norm_out(hidden_states)
hidden_states = unet.conv_act(hidden_states)
hidden_states = unet.conv_out(hidden_states)
return hidden_states
def lets_dance_xl(
unet: SDXLUNet,
motion_modules: SDXLMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
add_time_id = None,
add_text_embeds = None,
timestep = None,
encoder_hidden_states = None,
ipadapter_kwargs_list = {},
controlnet_frames = None,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
tiled=False,
tile_size=64,
tile_stride=32,
device = "cuda",
vram_limit_level = 0,
):
# 0. Text embedding alignment (only for video processing)
if encoder_hidden_states.shape[0] != sample.shape[0]:
encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0], 1, 1, 1)
# 1. ControlNet
controlnet_insert_block_id = 22
if controlnet is not None and controlnet_frames is not None:
res_stacks = []
# process controlnet frames with batch
for batch_id in range(0, sample.shape[0], controlnet_batch_size):
batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0])
res_stack = controlnet(
sample[batch_id: batch_id_],
timestep,
encoder_hidden_states[batch_id: batch_id_],
controlnet_frames[:, batch_id: batch_id_],
add_time_id=add_time_id,
add_text_embeds=add_text_embeds,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
unet=unet, # for Kolors, some modules in ControlNets will be replaced.
)
if vram_limit_level >= 1:
res_stack = [res.cpu() for res in res_stack]
res_stacks.append(res_stack)
# concat the residual
additional_res_stack = []
for i in range(len(res_stacks[0])):
res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0)
additional_res_stack.append(res)
else:
additional_res_stack = None
# 2. time
t_emb = unet.time_proj(timestep).to(sample.dtype)
t_emb = unet.time_embedding(t_emb)
time_embeds = unet.add_time_proj(add_time_id)
time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1))
add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(sample.dtype)
add_embeds = unet.add_time_embedding(add_embeds)
time_emb = t_emb + add_embeds
# 3. pre-process
height, width = sample.shape[2], sample.shape[3]
hidden_states = unet.conv_in(sample)
text_emb = encoder_hidden_states if unet.text_intermediate_proj is None else unet.text_intermediate_proj(encoder_hidden_states)
res_stack = [hidden_states]
# 4. blocks
for block_id, block in enumerate(unet.blocks):
# 4.1 UNet
if isinstance(block, PushBlock):
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].cpu()
elif isinstance(block, PopBlock):
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].to(device)
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
else:
hidden_states_input = hidden_states
hidden_states_output = []
for batch_id in range(0, sample.shape[0], unet_batch_size):
batch_id_ = min(batch_id + unet_batch_size, sample.shape[0])
hidden_states, _, _, _ = block(
hidden_states_input[batch_id: batch_id_],
time_emb,
text_emb[batch_id: batch_id_],
res_stack,
cross_frame_attention=cross_frame_attention,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}),
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
)
hidden_states_output.append(hidden_states)
hidden_states = torch.concat(hidden_states_output, dim=0)
# 4.2 AnimateDiff
if motion_modules is not None:
if block_id in motion_modules.call_block_id:
motion_module_id = motion_modules.call_block_id[block_id]
hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
hidden_states, time_emb, text_emb, res_stack,
batch_size=1
)
# 4.3 ControlNet
if block_id == controlnet_insert_block_id and additional_res_stack is not None:
hidden_states += additional_res_stack.pop().to(device)
res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)]
# 5. output
hidden_states = unet.conv_norm_out(hidden_states)
hidden_states = unet.conv_act(hidden_states)
hidden_states = unet.conv_out(hidden_states)
return hidden_states |