Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,714 Bytes
703e263 8601520 703e263 37e0538 703e263 e05c12f 703e263 37e0538 703e263 fc36676 703e263 c2030ad 703e263 c2030ad 703e263 c2030ad 703e263 c2030ad 703e263 616413a 703e263 be940e8 703e263 c2030ad b819d6d 703e263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import spaces
import os
os.system("pip install -r requirements.txt")
from huggingface_hub import login
login(token=os.getenv('HF_AK'))
from diffsynth import download_models
download_models(["FLUX.1-dev"], downloading_priority=["HuggingFace", "ModelScope"])
import gradio as gr
from diffsynth import ModelManager, SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline
import os, torch
from PIL import Image
import numpy as np
config = {
"model_config": {
"Stable Diffusion": {
"model_folder": "models/stable_diffusion",
"pipeline_class": SDImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
"height": 512,
"width": 512,
}
},
"Stable Diffusion XL": {
"model_folder": "models/stable_diffusion_xl",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"Stable Diffusion 3": {
"model_folder": "models/stable_diffusion_3",
"pipeline_class": SD3ImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"Stable Diffusion XL Turbo": {
"model_folder": "models/stable_diffusion_xl_turbo",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"negative_prompt": "",
"cfg_scale": 1.0,
"num_inference_steps": 1,
"height": 512,
"width": 512,
}
},
"Kolors": {
"model_folder": "models/kolors",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"HunyuanDiT": {
"model_folder": "models/HunyuanDiT",
"pipeline_class": HunyuanDiTImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"FLUX": {
"model_folder": "models/FLUX",
"pipeline_class": FluxImagePipeline,
"default_parameters": {
"cfg_scale": 1.0,
}
}
},
"max_num_painter_layers": 3,
"max_num_model_cache": 2,
}
def load_model_list(model_type):
if model_type is None:
return []
folder = config["model_config"][model_type]["model_folder"]
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
if model_type in ["HunyuanDiT", "Kolors", "FLUX"]:
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
file_list = sorted(file_list)
return file_list
def load_model(model_type, model_path):
global model_dict
model_key = f"{model_type}:{model_path}"
if model_key in model_dict:
return model_dict[model_key]
model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path)
model_manager = ModelManager()
if model_type == "HunyuanDiT":
model_manager.load_models([
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
os.path.join(model_path, "mt5/pytorch_model.bin"),
os.path.join(model_path, "model/pytorch_model_ema.pt"),
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
])
elif model_type == "Kolors":
model_manager.load_models([
os.path.join(model_path, "text_encoder"),
os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"),
os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"),
])
elif model_type == "FLUX":
model_manager.torch_dtype = torch.bfloat16
file_list = [
os.path.join(model_path, "text_encoder/model.safetensors"),
os.path.join(model_path, "text_encoder_2"),
]
for file_name in os.listdir(model_path):
if file_name.endswith(".safetensors"):
file_list.append(os.path.join(model_path, file_name))
model_manager.load_models(file_list)
else:
model_manager.load_model(model_path)
pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager)
while len(model_dict) + 1 > config["max_num_model_cache"]:
key = next(iter(model_dict.keys()))
model_manager_to_release, _ = model_dict[key]
model_manager_to_release.to("cpu")
del model_dict[key]
torch.cuda.empty_cache()
model_dict[model_key] = model_manager, pipe
return model_manager, pipe
model_dict = {}
load_model("FLUX", "FLUX.1-dev")
with gr.Blocks() as app:
gr.Markdown("# DiffSynth-Studio Painter")
with gr.Row():
with gr.Column(scale=382, min_width=100):
with gr.Accordion(label="Model"):
model_type = gr.Dropdown(choices=["FLUX"], label="Model type", value="FLUX")
model_path = gr.Dropdown(choices=["FLUX.1-dev"], interactive=True, label="Model path", value="FLUX.1-dev")
@gr.on(inputs=model_type, outputs=model_path, triggers=model_type.change)
def model_type_to_model_path(model_type):
return gr.Dropdown(choices=load_model_list(model_type))
with gr.Accordion(label="Prompt"):
prompt = gr.Textbox(label="Prompt", lines=3)
negative_prompt = gr.Textbox(label="Negative prompt", lines=1)
cfg_scale = gr.Slider(minimum=1.0, maximum=10.0, value=1.0, step=0.1, interactive=True, label="Classifier-free guidance scale")
embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.1, interactive=True, label="Embedded guidance scale (only for FLUX)")
with gr.Accordion(label="Image"):
num_inference_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, interactive=True, label="Inference steps")
height = gr.Slider(minimum=1024, maximum=1024, value=1024, step=64, interactive=False, label="Height", visible=False)
width = gr.Slider(minimum=1024, maximum=1024, value=1024, step=64, interactive=False, label="Width", visible=False)
with gr.Column():
use_fixed_seed = gr.Checkbox(value=True, interactive=False, label="Use fixed seed")
seed = gr.Number(minimum=0, maximum=10**9, value=0, interactive=True, label="Random seed", show_label=False)
with gr.Row(elem_id="pro-tips"):
gr.Markdown("""
# Usage:
1. Enter a prompt and click "Generate" to create an image.
2. Click "Set as painter's background" to use the generated image as the canvas.
3. In the painter, draw the area you want to repaint and set a local prompt. For multiple areas with different prompts, use layer1 and layer2, and click "Enable this layer" to activate the canvas.
4. Click "Generate" again to obtain the repainted image.
5. If you want to regenerate a new image as the background, uncheck "Enable this layer," update the prompt, and click "Generate."
""")
@gr.on(
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
outputs=[prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
triggers=model_path.change
)
def model_path_to_default_params(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width):
load_model(model_type, model_path)
cfg_scale = config["model_config"][model_type]["default_parameters"].get("cfg_scale", cfg_scale)
embedded_guidance = config["model_config"][model_type]["default_parameters"].get("embedded_guidance", embedded_guidance)
num_inference_steps = config["model_config"][model_type]["default_parameters"].get("num_inference_steps", num_inference_steps)
height = config["model_config"][model_type]["default_parameters"].get("height", height)
width = config["model_config"][model_type]["default_parameters"].get("width", width)
return prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width
with gr.Column(scale=618, min_width=100):
with gr.Accordion(label="Painter"):
enable_local_prompt_list = []
local_prompt_list = []
mask_scale_list = []
canvas_list = []
for painter_layer_id in range(config["max_num_painter_layers"]):
with gr.Tab(label=f"Layer {painter_layer_id}"):
enable_local_prompt_value = painter_layer_id == 0
enable_local_prompt = gr.Checkbox(
label="Enable this layer",
value=enable_local_prompt_value,
key=f"enable_local_prompt_{painter_layer_id}"
)
local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}")
mask_scale = gr.Slider(minimum=0.0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Mask scale", key=f"mask_scale_{painter_layer_id}")
canvas_size = (1024, 1024) if painter_layer_id == 0 else (1024, 1)
canvas = gr.ImageEditor(canvas_size=canvas_size, sources=None, layers=False, interactive=True, image_mode="RGBA",
brush=gr.Brush(default_size=100, default_color="#000000", colors=["#000000"]),
label="Painter", key=f"canvas_{painter_layer_id}")
@gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear, enable_local_prompt.change], show_progress="hidden")
def resize_canvas(height, width, canvas):
h, w = canvas["background"].shape[:2]
if h != height or width != w:
return np.ones((height, width, 3), dtype=np.uint8) * 255
else:
return canvas
enable_local_prompt_list.append(enable_local_prompt)
local_prompt_list.append(local_prompt)
mask_scale_list.append(mask_scale)
canvas_list.append(canvas)
with gr.Accordion(label="Results"):
run_button = gr.Button(value="Generate", variant="primary")
output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil")
output_to_painter_button = gr.Button(value="Set as painter's background")
painter_background = gr.State(None)
input_background = gr.State(None)
@gr.on(
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed] + enable_local_prompt_list + local_prompt_list + mask_scale_list + canvas_list,
outputs=[output_image],
triggers=run_button.click
)
@spaces.GPU(duration=120)
def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed, *args, progress=gr.Progress()):
_, pipe = load_model(model_type, model_path)
input_params = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"cfg_scale": cfg_scale,
"num_inference_steps": num_inference_steps,
"height": height,
"width": width,
"progress_bar_cmd": progress.tqdm,
}
if isinstance(pipe, FluxImagePipeline):
input_params["embedded_guidance"] = embedded_guidance
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list = (
args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]],
args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]],
args[2 * config["max_num_painter_layers"]: 3 * config["max_num_painter_layers"]],
args[3 * config["max_num_painter_layers"]: 4 * config["max_num_painter_layers"]]
)
local_prompts, masks, mask_scales = [], [], []
for enable_local_prompt, local_prompt, mask_scale, canvas in zip(
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list
):
if enable_local_prompt:
local_prompts.append(local_prompt)
masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB"))
mask_scales.append(mask_scale)
input_params.update({
"local_prompts": local_prompts,
"masks": masks,
"mask_scales": mask_scales,
})
torch.manual_seed(seed)
image = pipe(**input_params)
return image
@gr.on(inputs=[output_image] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click)
def send_output_to_painter_background(output_image, *canvas_list):
for canvas in canvas_list:
h, w = canvas["background"].shape[:2]
canvas["background"] = output_image.resize((w, h))
return tuple(canvas_list)
canvas1 = {
"background": Image.open("images/image1.png"),
"layers": [np.array(Image.open("images/image1_layer.png"))],
"composite": "images/image1_layer.png",
}
canvas2 = {
"background": Image.open("images/image2.png"),
"layers": [np.array(Image.open("images/image2_layer.png"))],
"composite": "images/image2_layer.png",
}
canvas3 = {
"background": Image.open("images/image3.png"),
"layers": [np.array(Image.open("images/image3_layer.png"))],
"composite": "images/image3_layer.png",
}
print(*enable_local_prompt_list, *local_prompt_list, *mask_scale_list, *canvas_list)
with gr.Row():
show_case = gr.Examples(
examples=[
["a girl", 0, "images/image1.png", True, "red hat", 3.0, canvas1],
["an orange cat", 0, "images/image2.png", True, "a big crown on the cat", 3.0, canvas2],
["A young man is riding a horse", 0, "images/image3.png", True, "A robot is riding a horse", 3.0, canvas3],
],
inputs=[prompt, seed, output_image, enable_local_prompt_list[0], local_prompt_list[0], mask_scale_list[0], canvas_list[0]],
label=None
)
app.launch()
|