File size: 8,667 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
from .sd_unet import SDUNet
from .sdxl_unet import SDXLUNet
from .sd_text_encoder import SDTextEncoder
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sd3_dit import SD3DiT
from .hunyuan_dit import HunyuanDiT



class LoRAFromCivitai:
    def __init__(self):
        self.supported_model_classes = []
        self.lora_prefix = []
        self.renamed_lora_prefix = {}
        self.special_keys = {}


    def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
        renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
        state_dict_ = {}
        for key in state_dict:
            if ".lora_up" not in key:
                continue
            if not key.startswith(lora_prefix):
                continue
            weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
            weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
            if len(weight_up.shape) == 4:
                weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
                weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
                lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            else:
                lora_weight = alpha * torch.mm(weight_up, weight_down)
            target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
            for special_key in self.special_keys:
                target_name = target_name.replace(special_key, self.special_keys[special_key])
            state_dict_[target_name] = lora_weight.cpu()
        return state_dict_
    

    def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
        state_dict_model = model.state_dict()
        state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
        if model_resource == "diffusers":
            state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
        elif model_resource == "civitai":
            state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
        if len(state_dict_lora) > 0:
            print(f"    {len(state_dict_lora)} tensors are updated.")
            for name in state_dict_lora:
                state_dict_model[name] += state_dict_lora[name].to(
                    dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
            model.load_state_dict(state_dict_model)
    

    def match(self, model, state_dict_lora):
        for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
            if not isinstance(model, model_class):
                continue
            state_dict_model = model.state_dict()
            for model_resource in ["diffusers", "civitai"]:
                try:
                    state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
                    converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
                        else model.__class__.state_dict_converter().from_civitai
                    state_dict_lora_ = converter_fn(state_dict_lora_)
                    if len(state_dict_lora_) == 0:
                        continue
                    for name in state_dict_lora_:
                        if name not in state_dict_model:
                            break
                    else:
                        return lora_prefix, model_resource
                except:
                    pass
        return None



class SDLoRAFromCivitai(LoRAFromCivitai):
    def __init__(self):
        super().__init__()
        self.supported_model_classes = [SDUNet, SDTextEncoder]
        self.lora_prefix = ["lora_unet_", "lora_te_"]
        self.special_keys = {
            "down.blocks": "down_blocks",
            "up.blocks": "up_blocks",
            "mid.block": "mid_block",
            "proj.in": "proj_in",
            "proj.out": "proj_out",
            "transformer.blocks": "transformer_blocks",
            "to.q": "to_q",
            "to.k": "to_k",
            "to.v": "to_v",
            "to.out": "to_out",
            "text.model": "text_model",
            "self.attn.q.proj": "self_attn.q_proj",
            "self.attn.k.proj": "self_attn.k_proj",
            "self.attn.v.proj": "self_attn.v_proj",
            "self.attn.out.proj": "self_attn.out_proj",
            "input.blocks": "model.diffusion_model.input_blocks",
            "middle.block": "model.diffusion_model.middle_block",
            "output.blocks": "model.diffusion_model.output_blocks",
        }


class SDXLLoRAFromCivitai(LoRAFromCivitai):
    def __init__(self):
        super().__init__()
        self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2]
        self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"]
        self.renamed_lora_prefix = {"lora_te2_": "2"}
        self.special_keys = {
            "down.blocks": "down_blocks",
            "up.blocks": "up_blocks",
            "mid.block": "mid_block",
            "proj.in": "proj_in",
            "proj.out": "proj_out",
            "transformer.blocks": "transformer_blocks",
            "to.q": "to_q",
            "to.k": "to_k",
            "to.v": "to_v",
            "to.out": "to_out",
            "text.model": "conditioner.embedders.0.transformer.text_model",
            "self.attn.q.proj": "self_attn.q_proj",
            "self.attn.k.proj": "self_attn.k_proj",
            "self.attn.v.proj": "self_attn.v_proj",
            "self.attn.out.proj": "self_attn.out_proj",
            "input.blocks": "model.diffusion_model.input_blocks",
            "middle.block": "model.diffusion_model.middle_block",
            "output.blocks": "model.diffusion_model.output_blocks",
            "2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers"
        }
        


class GeneralLoRAFromPeft:
    def __init__(self):
        self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT]


    def convert_state_dict(self, state_dict, alpha=1.0, device="cuda", torch_dtype=torch.float16):
        state_dict_ = {}
        for key in state_dict:
            if ".lora_B." not in key:
                continue
            weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
            weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
            if len(weight_up.shape) == 4:
                weight_up = weight_up.squeeze(3).squeeze(2)
                weight_down = weight_down.squeeze(3).squeeze(2)
                lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
            else:
                lora_weight = alpha * torch.mm(weight_up, weight_down)
            keys = key.split(".")
            keys.pop(keys.index("lora_B") + 1)
            keys.pop(keys.index("lora_B"))
            target_name = ".".join(keys)
            state_dict_[target_name] = lora_weight.cpu()
        return state_dict_
    

    def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
        state_dict_model = model.state_dict()
        for name, param in state_dict_model.items():
            torch_dtype = param.dtype
            device = param.device
            break
        state_dict_lora = self.convert_state_dict(state_dict_lora, alpha=alpha, device=device, torch_dtype=torch_dtype)
        if len(state_dict_lora) > 0:
            print(f"    {len(state_dict_lora)} tensors are updated.")
            for name in state_dict_lora:
                state_dict_model[name] += state_dict_lora[name].to(
                    dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
            model.load_state_dict(state_dict_model)
    

    def match(self, model, state_dict_lora):
        for model_class in self.supported_model_classes:
            if not isinstance(model, model_class):
                continue
            state_dict_model = model.state_dict()
            try:
                state_dict_lora_ = self.convert_state_dict(state_dict_lora, alpha=1.0)
                if len(state_dict_lora_) == 0:
                    continue
                for name in state_dict_lora_:
                    if name not in state_dict_model:
                        break
                else:
                    return "", ""
            except:
                pass
        return None