wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
8.67 kB
import torch
from .sd_unet import SDUNet
from .sdxl_unet import SDXLUNet
from .sd_text_encoder import SDTextEncoder
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sd3_dit import SD3DiT
from .hunyuan_dit import HunyuanDiT
class LoRAFromCivitai:
def __init__(self):
self.supported_model_classes = []
self.lora_prefix = []
self.renamed_lora_prefix = {}
self.special_keys = {}
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
state_dict_ = {}
for key in state_dict:
if ".lora_up" not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
for special_key in self.special_keys:
target_name = target_name.replace(special_key, self.special_keys[special_key])
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
state_dict_model = model.state_dict()
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
if model_resource == "diffusers":
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
elif model_resource == "civitai":
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
if len(state_dict_lora) > 0:
print(f" {len(state_dict_lora)} tensors are updated.")
for name in state_dict_lora:
state_dict_model[name] += state_dict_lora[name].to(
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
model.load_state_dict(state_dict_model)
def match(self, model, state_dict_lora):
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
if not isinstance(model, model_class):
continue
state_dict_model = model.state_dict()
for model_resource in ["diffusers", "civitai"]:
try:
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
else model.__class__.state_dict_converter().from_civitai
state_dict_lora_ = converter_fn(state_dict_lora_)
if len(state_dict_lora_) == 0:
continue
for name in state_dict_lora_:
if name not in state_dict_model:
break
else:
return lora_prefix, model_resource
except:
pass
return None
class SDLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDUNet, SDTextEncoder]
self.lora_prefix = ["lora_unet_", "lora_te_"]
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
}
class SDXLLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2]
self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"]
self.renamed_lora_prefix = {"lora_te2_": "2"}
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "conditioner.embedders.0.transformer.text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
"2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers"
}
class GeneralLoRAFromPeft:
def __init__(self):
self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT]
def convert_state_dict(self, state_dict, alpha=1.0, device="cuda", torch_dtype=torch.float16):
state_dict_ = {}
for key in state_dict:
if ".lora_B." not in key:
continue
weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
keys = key.split(".")
keys.pop(keys.index("lora_B") + 1)
keys.pop(keys.index("lora_B"))
target_name = ".".join(keys)
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
state_dict_model = model.state_dict()
for name, param in state_dict_model.items():
torch_dtype = param.dtype
device = param.device
break
state_dict_lora = self.convert_state_dict(state_dict_lora, alpha=alpha, device=device, torch_dtype=torch_dtype)
if len(state_dict_lora) > 0:
print(f" {len(state_dict_lora)} tensors are updated.")
for name in state_dict_lora:
state_dict_model[name] += state_dict_lora[name].to(
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
model.load_state_dict(state_dict_model)
def match(self, model, state_dict_lora):
for model_class in self.supported_model_classes:
if not isinstance(model, model_class):
continue
state_dict_model = model.state_dict()
try:
state_dict_lora_ = self.convert_state_dict(state_dict_lora, alpha=1.0)
if len(state_dict_lora_) == 0:
continue
for name in state_dict_lora_:
if name not in state_dict_model:
break
else:
return "", ""
except:
pass
return None